求助PDF
{"title":"颗粒尺寸和孔隙分布对多孔介质中CO2水合物形成动力学的影响综述","authors":"Xuemin Zhang, Pengyu Li, Qing Yuan, Jinping Li, Tao Shan, Qingbai Wu, Yingmei Wang","doi":"10.1002/ghg.2239","DOIUrl":null,"url":null,"abstract":"<p>As an essential greenhouse gas, CO<sub>2</sub> is the leading cause of global warming and environmental problems. An efficient strategy to lower CO<sub>2</sub> emissions is the hydrate-based method of CO<sub>2</sub> geological storage. The stability and formation process of hydrate is the premise and foundation of the hydrate method of CO<sub>2</sub> geological storage. However, the formation rule of CO<sub>2</sub> hydrate has a significant impact on the formation characteristics of CO<sub>2</sub> hydrate. This paper thoroughly examines the formation properties of CO<sub>2</sub> hydrate in porous media systems. The quantitative impacts and laws of many parameters on the CO<sub>2</sub> hydrate production process are thoroughly examined. On this basis, the internal mechanism of particle size, pore distribution, and critical size of particles in porous media systems on the kinetics of CO<sub>2</sub> hydrate formation are detailed. Finally, the shortcomings of the studies on CO<sub>2</sub> hydrate formation kinetics in porous media systems and the main directions in the future are pointed out. The influence of pore distribution in porous media on the CO<sub>2</sub> hydrate formation process still needs further study. The relative results will be useful in the future for CO<sub>2</sub> capture and sequestration in sediments. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 6","pages":"860-875"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of the influence of particle size and pore distribution on the kinetics of CO2 hydrate formation in porous media\",\"authors\":\"Xuemin Zhang, Pengyu Li, Qing Yuan, Jinping Li, Tao Shan, Qingbai Wu, Yingmei Wang\",\"doi\":\"10.1002/ghg.2239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As an essential greenhouse gas, CO<sub>2</sub> is the leading cause of global warming and environmental problems. An efficient strategy to lower CO<sub>2</sub> emissions is the hydrate-based method of CO<sub>2</sub> geological storage. The stability and formation process of hydrate is the premise and foundation of the hydrate method of CO<sub>2</sub> geological storage. However, the formation rule of CO<sub>2</sub> hydrate has a significant impact on the formation characteristics of CO<sub>2</sub> hydrate. This paper thoroughly examines the formation properties of CO<sub>2</sub> hydrate in porous media systems. The quantitative impacts and laws of many parameters on the CO<sub>2</sub> hydrate production process are thoroughly examined. On this basis, the internal mechanism of particle size, pore distribution, and critical size of particles in porous media systems on the kinetics of CO<sub>2</sub> hydrate formation are detailed. Finally, the shortcomings of the studies on CO<sub>2</sub> hydrate formation kinetics in porous media systems and the main directions in the future are pointed out. The influence of pore distribution in porous media on the CO<sub>2</sub> hydrate formation process still needs further study. The relative results will be useful in the future for CO<sub>2</sub> capture and sequestration in sediments. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"13 6\",\"pages\":\"860-875\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2239\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2239","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用