认知无线电网络中二次用户传输的混合滤波器检测网络模型

D. Vijaya Saradhi, Swetha Katragadda, H. Valiveti
{"title":"认知无线电网络中二次用户传输的混合滤波器检测网络模型","authors":"D. Vijaya Saradhi, Swetha Katragadda, H. Valiveti","doi":"10.1108/ijius-08-2021-0091","DOIUrl":null,"url":null,"abstract":"PurposeA huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of application scenarios. The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time.Design/methodology/approachThe spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time. Therefore, the technology of cognitive radio (CR) is considered as one of the efficient solutions for addressing the drawbacks of spectrum distribution whereas the secondary user (SU) performance is significantly influenced by the spatiotemporal instability of spectrum.FindingsAs a result, the technique of the hybrid filter detection network model (HFDNM) is suggested in this research work under various SU relationships in the networks of CR. Furthermore, a technique of hybrid filter detection was recommended in this work to enhance the performance of idle spectrum applications. When compared to other existing techniques, the suggested research work achieves enhanced efficiency with respect to both throughputs as well as delay.Originality/valueThe proposed HFDNM improved the transmission delay at 3 SUs with 0.004 s/message and 0.008 s/message when compared with existing NCNC and NNC methods in case of number of SUs and also improved 0.02 s/message and 0.08 s/message when compared with the existing methods of NCNC and NNC in case of channel loss probability at 0.3.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid filter detection network model for secondary user transmission in cognitive radio networks\",\"authors\":\"D. Vijaya Saradhi, Swetha Katragadda, H. Valiveti\",\"doi\":\"10.1108/ijius-08-2021-0091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeA huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of application scenarios. The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time.Design/methodology/approachThe spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time. Therefore, the technology of cognitive radio (CR) is considered as one of the efficient solutions for addressing the drawbacks of spectrum distribution whereas the secondary user (SU) performance is significantly influenced by the spatiotemporal instability of spectrum.FindingsAs a result, the technique of the hybrid filter detection network model (HFDNM) is suggested in this research work under various SU relationships in the networks of CR. Furthermore, a technique of hybrid filter detection was recommended in this work to enhance the performance of idle spectrum applications. When compared to other existing techniques, the suggested research work achieves enhanced efficiency with respect to both throughputs as well as delay.Originality/valueThe proposed HFDNM improved the transmission delay at 3 SUs with 0.004 s/message and 0.008 s/message when compared with existing NCNC and NNC methods in case of number of SUs and also improved 0.02 s/message and 0.08 s/message when compared with the existing methods of NCNC and NNC in case of channel loss probability at 0.3.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-08-2021-0091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-08-2021-0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 2

摘要

目的各种各样的设备在有线网络或无线网络的帮助下积累和分发大量数据,以实现各种各样的应用场景。另一方面,随着通信设备的发展,频谱资源变得极不可用,从而使数据难以按时传输。设计/方法/方法另一方面,随着通信设备的发展,频谱资源变得极不可用,从而使数据难以按时传输。因此,认知无线电(CR)技术被认为是解决频谱分布缺陷的有效解决方案之一,而二次用户(SU)的性能受到频谱时空不稳定性的显著影响。结果表明,在CR网络中各种SU关系下,本文提出了混合滤波器检测网络模型(HFDNM)技术。此外,本文还提出了一种混合滤波器检测技术,以提高空闲频谱应用的性能。与其他现有技术相比,所建议的研究工作在吞吐量和延迟方面都提高了效率。独创性/价值在SU数量的情况下,与现有的NCNC和NNC方法相比,所提出的HFDNM在3个SU处的传输延迟分别提高了0.004秒/消息和0.008秒/消息,并且在信道丢失概率为0.3的情况下与NCNC和NN的现有方法相比,还提高了0.02秒/消息、0.08秒/消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid filter detection network model for secondary user transmission in cognitive radio networks
PurposeA huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of application scenarios. The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time.Design/methodology/approachThe spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time. Therefore, the technology of cognitive radio (CR) is considered as one of the efficient solutions for addressing the drawbacks of spectrum distribution whereas the secondary user (SU) performance is significantly influenced by the spatiotemporal instability of spectrum.FindingsAs a result, the technique of the hybrid filter detection network model (HFDNM) is suggested in this research work under various SU relationships in the networks of CR. Furthermore, a technique of hybrid filter detection was recommended in this work to enhance the performance of idle spectrum applications. When compared to other existing techniques, the suggested research work achieves enhanced efficiency with respect to both throughputs as well as delay.Originality/valueThe proposed HFDNM improved the transmission delay at 3 SUs with 0.004 s/message and 0.008 s/message when compared with existing NCNC and NNC methods in case of number of SUs and also improved 0.02 s/message and 0.08 s/message when compared with the existing methods of NCNC and NNC in case of channel loss probability at 0.3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
期刊最新文献
Design of hexacopter and finite element analysis for material selection Towards a novel cyber physical control system framework: a deep learning driven use case Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris Communication via quad/hexa-copters during disasters Nonlinear optimal control for UAVs with tilting rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1