生态生理模型中基因组预测和基因型特异性参数估计的集成:综述和展望

IF 2.6 Q1 AGRONOMY in silico Plants Pub Date : 2023-06-16 DOI:10.1093/insilicoplants/diad007
Pratishtha Poudel, B. Naidenov, Charles Chen, P. Alderman, S. Welch
{"title":"生态生理模型中基因组预测和基因型特异性参数估计的集成:综述和展望","authors":"Pratishtha Poudel, B. Naidenov, Charles Chen, P. Alderman, S. Welch","doi":"10.1093/insilicoplants/diad007","DOIUrl":null,"url":null,"abstract":"\n The Genome-to-Phenome (G2P) problem is one of the highest-priority challenges in applied biology. Ecophysiological crop models (ECM) and genomic prediction (GP) models are quantitative algorithms, which, when given information on a genotype and environment, can produce an accurate estimate of a phenotype of interest. In this article, we discuss how the GP algorithms can be used to estimate genotype-specific parameters (GSPs) in ECMs to develop robust prediction methods. In this approach, the numerical constants (GSPs) that ECMs use to distinguish and characterize crop cultivars/varieties are treated as quantitative traits to be predicted by genomic prediction models from underlying genetic information. In this article we provide information on which GP methods appear favorable for predicting different types of GSPs, such as vernalization sensitivity or potential radiation use efficiency. For each example GSP, we assess a number of GP methods in terms of their suitability using a set of three criteria grounded in genetic architecture, computational requirements, and the use of prior information. In general, we conclude that the most useful algorithms were dependent on both the nature of the particular GSP and the GP methods considered.","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating genomic prediction and genotype specific parameter estimation in ecophysiological models: overview and perspectives\",\"authors\":\"Pratishtha Poudel, B. Naidenov, Charles Chen, P. Alderman, S. Welch\",\"doi\":\"10.1093/insilicoplants/diad007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Genome-to-Phenome (G2P) problem is one of the highest-priority challenges in applied biology. Ecophysiological crop models (ECM) and genomic prediction (GP) models are quantitative algorithms, which, when given information on a genotype and environment, can produce an accurate estimate of a phenotype of interest. In this article, we discuss how the GP algorithms can be used to estimate genotype-specific parameters (GSPs) in ECMs to develop robust prediction methods. In this approach, the numerical constants (GSPs) that ECMs use to distinguish and characterize crop cultivars/varieties are treated as quantitative traits to be predicted by genomic prediction models from underlying genetic information. In this article we provide information on which GP methods appear favorable for predicting different types of GSPs, such as vernalization sensitivity or potential radiation use efficiency. For each example GSP, we assess a number of GP methods in terms of their suitability using a set of three criteria grounded in genetic architecture, computational requirements, and the use of prior information. In general, we conclude that the most useful algorithms were dependent on both the nature of the particular GSP and the GP methods considered.\",\"PeriodicalId\":36138,\"journal\":{\"name\":\"in silico Plants\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"in silico Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/insilicoplants/diad007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diad007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

基因组到表型(G2P)问题是应用生物学中最优先的挑战之一。生态生理作物模型(ECM)和基因组预测(GP)模型是定量算法,当提供有关基因型和环境的信息时,可以准确估计感兴趣的表型。在本文中,我们讨论了如何使用GP算法来估计ECM中的基因型特异性参数(GSP),以开发稳健的预测方法。在这种方法中,ECM用于区分和表征作物品种/品种的数值常数(GSP)被视为定量性状,由基因组预测模型根据潜在的遗传信息进行预测。在这篇文章中,我们提供了关于哪些GP方法似乎有利于预测不同类型的GSP的信息,例如春化敏感性或潜在的辐射利用效率。对于每个GSP示例,我们使用基于遗传结构、计算要求和先验信息使用的三个标准来评估许多GP方法的适用性。一般来说,我们得出的结论是,最有用的算法取决于特定GSP的性质和所考虑的GP方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating genomic prediction and genotype specific parameter estimation in ecophysiological models: overview and perspectives
The Genome-to-Phenome (G2P) problem is one of the highest-priority challenges in applied biology. Ecophysiological crop models (ECM) and genomic prediction (GP) models are quantitative algorithms, which, when given information on a genotype and environment, can produce an accurate estimate of a phenotype of interest. In this article, we discuss how the GP algorithms can be used to estimate genotype-specific parameters (GSPs) in ECMs to develop robust prediction methods. In this approach, the numerical constants (GSPs) that ECMs use to distinguish and characterize crop cultivars/varieties are treated as quantitative traits to be predicted by genomic prediction models from underlying genetic information. In this article we provide information on which GP methods appear favorable for predicting different types of GSPs, such as vernalization sensitivity or potential radiation use efficiency. For each example GSP, we assess a number of GP methods in terms of their suitability using a set of three criteria grounded in genetic architecture, computational requirements, and the use of prior information. In general, we conclude that the most useful algorithms were dependent on both the nature of the particular GSP and the GP methods considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
in silico Plants
in silico Plants Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
4.70
自引率
9.70%
发文量
21
审稿时长
10 weeks
期刊最新文献
Model-based inference of a dual role for HOPS in regulating guard cell vacuole fusion. Playing a crop simulation model using symbols and sounds: the ‘mandala’ A Scalable Pipeline to Create Synthetic Datasets from Functional-Structural Plant Models for Deep Learning In a PICKLE: A gold standard entity and relation corpus for the molecular plant sciences A comparison of empirical and mechanistic models for wheat yield prediction at field level in Moroccan rainfed areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1