Raef Aboelsaud, A. Ibrahim, A. Garganeev, I. V. Aleksandrov
{"title":"一种改进的三相逆变器死区消除方法","authors":"Raef Aboelsaud, A. Ibrahim, A. Garganeev, I. V. Aleksandrov","doi":"10.11591/IJPEDS.V11.I4.PP1759-1766","DOIUrl":null,"url":null,"abstract":"In real inverters' operations, it is essential to insert delay time in the pulses provided to the inverter switches to protect the DC link against the short circuits. From this situation, the dead time phenomenon is introduced that causes undesirable performance and distortion of the output signal. Previously, researchers have proposed various schemes for compensating or eliminating dead-time. In this paper, a new dead-time elimination (DTE) scheme is proposed with a guarantee algorithm to eliminate dead-time and overcome the issues produced at the zero-currents-crossing point (ZCC). This method does not require additional hardware or filters to determine the polarity of the output current, and its principle is very simple to implement. The developed DTE method completely removes the dead-time issues on the magnitude and phase of the output voltage, and avoid the problems which can be induced around the ZCC. The results confirm the effectiveness and safety of this method.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"11 1","pages":"1759-1766"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improved dead-time elimination method for three-phase power inverters\",\"authors\":\"Raef Aboelsaud, A. Ibrahim, A. Garganeev, I. V. Aleksandrov\",\"doi\":\"10.11591/IJPEDS.V11.I4.PP1759-1766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real inverters' operations, it is essential to insert delay time in the pulses provided to the inverter switches to protect the DC link against the short circuits. From this situation, the dead time phenomenon is introduced that causes undesirable performance and distortion of the output signal. Previously, researchers have proposed various schemes for compensating or eliminating dead-time. In this paper, a new dead-time elimination (DTE) scheme is proposed with a guarantee algorithm to eliminate dead-time and overcome the issues produced at the zero-currents-crossing point (ZCC). This method does not require additional hardware or filters to determine the polarity of the output current, and its principle is very simple to implement. The developed DTE method completely removes the dead-time issues on the magnitude and phase of the output voltage, and avoid the problems which can be induced around the ZCC. The results confirm the effectiveness and safety of this method.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"11 1\",\"pages\":\"1759-1766\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V11.I4.PP1759-1766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V11.I4.PP1759-1766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Improved dead-time elimination method for three-phase power inverters
In real inverters' operations, it is essential to insert delay time in the pulses provided to the inverter switches to protect the DC link against the short circuits. From this situation, the dead time phenomenon is introduced that causes undesirable performance and distortion of the output signal. Previously, researchers have proposed various schemes for compensating or eliminating dead-time. In this paper, a new dead-time elimination (DTE) scheme is proposed with a guarantee algorithm to eliminate dead-time and overcome the issues produced at the zero-currents-crossing point (ZCC). This method does not require additional hardware or filters to determine the polarity of the output current, and its principle is very simple to implement. The developed DTE method completely removes the dead-time issues on the magnitude and phase of the output voltage, and avoid the problems which can be induced around the ZCC. The results confirm the effectiveness and safety of this method.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.