{"title":"降低大型商船水下噪声污染的实用方法综述","authors":"R. Leaper, M. Renilson","doi":"10.5750/ijme.v154ia2.877","DOIUrl":null,"url":null,"abstract":"Underwater noise pollution from shipping is of considerable concern for marine life, particularly due to the potential for raised ambient noise levels in the 10-300Hz frequency range to mask biological sounds. There is widespread agreement that reducing shipping noise is both necessary and feasible, and the International Maritime Organization is actively working on the issue. The main source of noise is associated with propeller cavitation, and measures to improve propeller design and wake flow may also reduce noise. It is likely that the noisiest 10% of ships generate the majority of the noise impact, and it may be possible to quieten these vessels through measures that also improve efficiency. However, an extensive data set of full scale noise measurements of ships under operating conditions is required to fully understand how different factors relate to noise output and how noise reduction can be achieved alongside energy saving measures.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A REVIEW OF PRACTICAL METHODS FOR REDUCING UNDERWATER NOISE POLLUTION FROM LARGE COMMERCIAL VESSELS\",\"authors\":\"R. Leaper, M. Renilson\",\"doi\":\"10.5750/ijme.v154ia2.877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater noise pollution from shipping is of considerable concern for marine life, particularly due to the potential for raised ambient noise levels in the 10-300Hz frequency range to mask biological sounds. There is widespread agreement that reducing shipping noise is both necessary and feasible, and the International Maritime Organization is actively working on the issue. The main source of noise is associated with propeller cavitation, and measures to improve propeller design and wake flow may also reduce noise. It is likely that the noisiest 10% of ships generate the majority of the noise impact, and it may be possible to quieten these vessels through measures that also improve efficiency. However, an extensive data set of full scale noise measurements of ships under operating conditions is required to fully understand how different factors relate to noise output and how noise reduction can be achieved alongside energy saving measures.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v154ia2.877\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v154ia2.877","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A REVIEW OF PRACTICAL METHODS FOR REDUCING UNDERWATER NOISE POLLUTION FROM LARGE COMMERCIAL VESSELS
Underwater noise pollution from shipping is of considerable concern for marine life, particularly due to the potential for raised ambient noise levels in the 10-300Hz frequency range to mask biological sounds. There is widespread agreement that reducing shipping noise is both necessary and feasible, and the International Maritime Organization is actively working on the issue. The main source of noise is associated with propeller cavitation, and measures to improve propeller design and wake flow may also reduce noise. It is likely that the noisiest 10% of ships generate the majority of the noise impact, and it may be possible to quieten these vessels through measures that also improve efficiency. However, an extensive data set of full scale noise measurements of ships under operating conditions is required to fully understand how different factors relate to noise output and how noise reduction can be achieved alongside energy saving measures.
期刊介绍:
The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.