Hang Zhang, R. Zhao, Ying Yang, Yinyin Liu, Linchen Han
{"title":"用微型电容去离子池辅助的微流体装置测量地表水中的硝酸盐浓度","authors":"Hang Zhang, R. Zhao, Ying Yang, Yinyin Liu, Linchen Han","doi":"10.2166/wqrj.2023.010","DOIUrl":null,"url":null,"abstract":"\n Excessive nitrate in surface waters poses a great threat to the health of human beings. Traditional measuring tools require either hazardous chemicals or organic matter compensation. In this work, we proposed an online microfluidic device incorporated with a miniaturized capacitive deionization cell that separates organic matter and nitrate ions before the measurement and afterwards determines the nitrate concentration with a 235-nm LED. The optimal operational parameter setting, which is a combination of 600-s charging duration and 0.5-V cell potential, was also obtained in order to achieve the maximum fractionation of nitrate ions. Promising results were obtained by our new approach, revealing that this device could serve as a functional and effective tool for the determination of nitrate concentration in surface water.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring nitrate concentration in surface waters with a microfluidic device facilitated by a miniaturized capacitive deionization cell\",\"authors\":\"Hang Zhang, R. Zhao, Ying Yang, Yinyin Liu, Linchen Han\",\"doi\":\"10.2166/wqrj.2023.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Excessive nitrate in surface waters poses a great threat to the health of human beings. Traditional measuring tools require either hazardous chemicals or organic matter compensation. In this work, we proposed an online microfluidic device incorporated with a miniaturized capacitive deionization cell that separates organic matter and nitrate ions before the measurement and afterwards determines the nitrate concentration with a 235-nm LED. The optimal operational parameter setting, which is a combination of 600-s charging duration and 0.5-V cell potential, was also obtained in order to achieve the maximum fractionation of nitrate ions. Promising results were obtained by our new approach, revealing that this device could serve as a functional and effective tool for the determination of nitrate concentration in surface water.\",\"PeriodicalId\":23720,\"journal\":{\"name\":\"Water Quality Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wqrj.2023.010\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2023.010","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Measuring nitrate concentration in surface waters with a microfluidic device facilitated by a miniaturized capacitive deionization cell
Excessive nitrate in surface waters poses a great threat to the health of human beings. Traditional measuring tools require either hazardous chemicals or organic matter compensation. In this work, we proposed an online microfluidic device incorporated with a miniaturized capacitive deionization cell that separates organic matter and nitrate ions before the measurement and afterwards determines the nitrate concentration with a 235-nm LED. The optimal operational parameter setting, which is a combination of 600-s charging duration and 0.5-V cell potential, was also obtained in order to achieve the maximum fractionation of nitrate ions. Promising results were obtained by our new approach, revealing that this device could serve as a functional and effective tool for the determination of nitrate concentration in surface water.