多重STL分解发现日内交易量的多季节性

IF 0.5 Q4 ECONOMICS Croatian Operational Research Review Pub Date : 2021-06-29 DOI:10.17535/crorr.2021.0006
Josip Arnerić
{"title":"多重STL分解发现日内交易量的多季节性","authors":"Josip Arnerić","doi":"10.17535/crorr.2021.0006","DOIUrl":null,"url":null,"abstract":"The seasonal and trend decomposition of a univariate time-series based on Loess (STL) has several advantages over traditional methods. It deals with any periodicity length, enables seasonality change over time, allows missing values, and is robust to outliers. However, it does not handle trading day variation by default. This study offers how to deal with this drawback. By applying multiple STL decompositions of 15-minute trading volume observations, three seasonal patterns were discovered: hourly, daily, and monthly. The research objective was not only to discover if multi-seasonality exists in trading volume by employing high-frequency data but also to determine which seasonal component is most time-varying, and which seasonal components are the strongest or weakest when comparing the variation in the magnitude between them. The results indicate that hourly seasonality is the strongest, while daily seasonality changes the most. A better understanding of trading volume multiple patterns can be very helpful in improving the performance of trading algorithms.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple STL decomposition in discovering a multi-seasonality of intraday trading volume\",\"authors\":\"Josip Arnerić\",\"doi\":\"10.17535/crorr.2021.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The seasonal and trend decomposition of a univariate time-series based on Loess (STL) has several advantages over traditional methods. It deals with any periodicity length, enables seasonality change over time, allows missing values, and is robust to outliers. However, it does not handle trading day variation by default. This study offers how to deal with this drawback. By applying multiple STL decompositions of 15-minute trading volume observations, three seasonal patterns were discovered: hourly, daily, and monthly. The research objective was not only to discover if multi-seasonality exists in trading volume by employing high-frequency data but also to determine which seasonal component is most time-varying, and which seasonal components are the strongest or weakest when comparing the variation in the magnitude between them. The results indicate that hourly seasonality is the strongest, while daily seasonality changes the most. A better understanding of trading volume multiple patterns can be very helpful in improving the performance of trading algorithms.\",\"PeriodicalId\":44065,\"journal\":{\"name\":\"Croatian Operational Research Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Operational Research Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17535/crorr.2021.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/crorr.2021.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

基于黄土(STL)的单变量时间序列的季节和趋势分解与传统方法相比具有许多优点。它处理任何周期性长度,允许季节性随时间变化,允许丢失值,并且对异常值具有鲁棒性。但是,它默认不处理交易日变化。本研究提供了解决这一缺陷的方法。通过对15分钟交易量观察的多个STL分解,我们发现了三个季节性模式:每小时、每天和每月。研究的目的不仅是利用高频数据来发现交易量是否存在多季节性,而且在比较它们之间的幅度变化时,确定哪个季节成分的时变最大,以及哪个季节成分的变化最强或最弱。结果表明,逐时季节性变化最强,日季节性变化最大。更好地理解交易量的多种模式对提高交易算法的性能非常有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple STL decomposition in discovering a multi-seasonality of intraday trading volume
The seasonal and trend decomposition of a univariate time-series based on Loess (STL) has several advantages over traditional methods. It deals with any periodicity length, enables seasonality change over time, allows missing values, and is robust to outliers. However, it does not handle trading day variation by default. This study offers how to deal with this drawback. By applying multiple STL decompositions of 15-minute trading volume observations, three seasonal patterns were discovered: hourly, daily, and monthly. The research objective was not only to discover if multi-seasonality exists in trading volume by employing high-frequency data but also to determine which seasonal component is most time-varying, and which seasonal components are the strongest or weakest when comparing the variation in the magnitude between them. The results indicate that hourly seasonality is the strongest, while daily seasonality changes the most. A better understanding of trading volume multiple patterns can be very helpful in improving the performance of trading algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
5
审稿时长
22 weeks
期刊介绍: Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.
期刊最新文献
Improving portfolio liquidity A novel modified Khatter’s approach for solving Neutrosophic Data Envelopment Analysis Economic complexity and income inequality in EU countries Estimating outputs using an inverse non-radial model with non-discretionary measures Behavioural antecedents of Bitcoin trading volume
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1