Fabrizio Ricci, E. Monaco, N.D. Boffa, L. Maio, V. Memmolo
{"title":"复合材料结构健康监测用导波:综述与实施策略","authors":"Fabrizio Ricci, E. Monaco, N.D. Boffa, L. Maio, V. Memmolo","doi":"10.1016/j.paerosci.2021.100790","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Structural Health Monitoring (SHM) systems provide a useful tool to diagnose any engineered structural system and eventual critical damage that may occur at any moment during the operational life. In the past two decades progress has been made in all the fields of SHM, from sensor technology to </span>system integrated techniques. The common goal of any SHM system, whatever the specific application is, may be synthesized in three main points: identify </span>structural deterioration stage, recognize its severity and evaluate the necessity to make a more detailed inspection or proceed to maintenance on condition, based on a potential hazard that may lead to a </span>catastrophic failure. The implementation of such a system leads to making normal operations with the same safety levels but with more efficient maintenance procedures. In addition, it allows avoiding the oversizing of structural components extending the inspection and maintenance intervals. Both these results help to reduce the life-cycle cost of the specific engineered system as it is possible to perform maintenance when it is necessary, i.e. on-condition.</p><p>The current state of the art about the guided waves (GW) based structural health monitoring of aerospace composite structures is reviewed in this paper, looking at the implementation of the methodologies proposed and assessed by the authors and giving an outlook on what has been done by the scientific community.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"129 ","pages":"Article 100790"},"PeriodicalIF":11.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Guided waves for structural health monitoring in composites: A review and implementation strategies\",\"authors\":\"Fabrizio Ricci, E. Monaco, N.D. Boffa, L. Maio, V. Memmolo\",\"doi\":\"10.1016/j.paerosci.2021.100790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Structural Health Monitoring (SHM) systems provide a useful tool to diagnose any engineered structural system and eventual critical damage that may occur at any moment during the operational life. In the past two decades progress has been made in all the fields of SHM, from sensor technology to </span>system integrated techniques. The common goal of any SHM system, whatever the specific application is, may be synthesized in three main points: identify </span>structural deterioration stage, recognize its severity and evaluate the necessity to make a more detailed inspection or proceed to maintenance on condition, based on a potential hazard that may lead to a </span>catastrophic failure. The implementation of such a system leads to making normal operations with the same safety levels but with more efficient maintenance procedures. In addition, it allows avoiding the oversizing of structural components extending the inspection and maintenance intervals. Both these results help to reduce the life-cycle cost of the specific engineered system as it is possible to perform maintenance when it is necessary, i.e. on-condition.</p><p>The current state of the art about the guided waves (GW) based structural health monitoring of aerospace composite structures is reviewed in this paper, looking at the implementation of the methodologies proposed and assessed by the authors and giving an outlook on what has been done by the scientific community.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"129 \",\"pages\":\"Article 100790\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042121000920\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042121000920","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Guided waves for structural health monitoring in composites: A review and implementation strategies
Structural Health Monitoring (SHM) systems provide a useful tool to diagnose any engineered structural system and eventual critical damage that may occur at any moment during the operational life. In the past two decades progress has been made in all the fields of SHM, from sensor technology to system integrated techniques. The common goal of any SHM system, whatever the specific application is, may be synthesized in three main points: identify structural deterioration stage, recognize its severity and evaluate the necessity to make a more detailed inspection or proceed to maintenance on condition, based on a potential hazard that may lead to a catastrophic failure. The implementation of such a system leads to making normal operations with the same safety levels but with more efficient maintenance procedures. In addition, it allows avoiding the oversizing of structural components extending the inspection and maintenance intervals. Both these results help to reduce the life-cycle cost of the specific engineered system as it is possible to perform maintenance when it is necessary, i.e. on-condition.
The current state of the art about the guided waves (GW) based structural health monitoring of aerospace composite structures is reviewed in this paper, looking at the implementation of the methodologies proposed and assessed by the authors and giving an outlook on what has been done by the scientific community.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.