基于卷积神经网络VGG的多作物叶片病害图像分类迁移学习

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2022-01-01 DOI:10.1016/j.aiia.2021.12.002
Ananda S. Paymode, Vandana B. Malode
{"title":"基于卷积神经网络VGG的多作物叶片病害图像分类迁移学习","authors":"Ananda S. Paymode,&nbsp;Vandana B. Malode","doi":"10.1016/j.aiia.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>In recent times, the use of artificial intelligence (AI) in agriculture has become the most important. The technology adoption in agriculture if creatively approached. Controlling on the diseased leaves during the growing stages of crops is a crucial step. The disease detection, classification, and analysis of diseased leaves at an early stage, as well as possible solutions, are always helpful in agricultural progress. The disease detection and classification of different crops, especially tomatoes and grapes, is a major emphasis of our proposed research. The important objective is to forecast the sort of illness that would affect grapes and tomato leaves at an early stage. The Convolutional Neural Network (CNN) methods are used for detecting Multi-Crops Leaf Disease (MCLD). The features extraction of images using a deep learning-based model classified the sick and healthy leaves. The CNN based Visual Geometry Group (VGG) model is used for improved performance measures. The crops leaves images dataset is considered for training and testing the model. The performance measure parameters, i.e., accuracy, sensitivity, specificity precision, recall and F1-score were calculated and monitored. The main objective of research with the proposed model is to make on-going improvements in the performance. The designed model classifies disease-affected leaves with greater accuracy. In the experiment proposed research has achieved an accuracy of 98.40% of grapes and 95.71% of tomatoes. The proposed research directly supports increasing food production in agriculture.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"6 ","pages":"Pages 23-33"},"PeriodicalIF":8.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721721000416/pdfft?md5=6efb65071e9550352409895eda1a2383&pid=1-s2.0-S2589721721000416-main.pdf","citationCount":"86","resultStr":"{\"title\":\"Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG\",\"authors\":\"Ananda S. Paymode,&nbsp;Vandana B. Malode\",\"doi\":\"10.1016/j.aiia.2021.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent times, the use of artificial intelligence (AI) in agriculture has become the most important. The technology adoption in agriculture if creatively approached. Controlling on the diseased leaves during the growing stages of crops is a crucial step. The disease detection, classification, and analysis of diseased leaves at an early stage, as well as possible solutions, are always helpful in agricultural progress. The disease detection and classification of different crops, especially tomatoes and grapes, is a major emphasis of our proposed research. The important objective is to forecast the sort of illness that would affect grapes and tomato leaves at an early stage. The Convolutional Neural Network (CNN) methods are used for detecting Multi-Crops Leaf Disease (MCLD). The features extraction of images using a deep learning-based model classified the sick and healthy leaves. The CNN based Visual Geometry Group (VGG) model is used for improved performance measures. The crops leaves images dataset is considered for training and testing the model. The performance measure parameters, i.e., accuracy, sensitivity, specificity precision, recall and F1-score were calculated and monitored. The main objective of research with the proposed model is to make on-going improvements in the performance. The designed model classifies disease-affected leaves with greater accuracy. In the experiment proposed research has achieved an accuracy of 98.40% of grapes and 95.71% of tomatoes. The proposed research directly supports increasing food production in agriculture.</p></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"6 \",\"pages\":\"Pages 23-33\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589721721000416/pdfft?md5=6efb65071e9550352409895eda1a2383&pid=1-s2.0-S2589721721000416-main.pdf\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721721000416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721721000416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 86

摘要

近年来,人工智能(AI)在农业中的应用已成为最重要的。农业技术的采用是创造性的。在作物生长阶段控制病叶是至关重要的一步。病害的早期检测、分类和分析,以及可能的解决方案,总是有助于农业的进步。不同作物,特别是番茄和葡萄的病害检测和分类是我们拟研究的重点。重要的目标是在早期阶段预测影响葡萄和番茄叶片的疾病种类。将卷积神经网络(CNN)方法用于多作物叶片病害(MCLD)的检测。利用基于深度学习的模型对图像进行特征提取,对病叶和健康叶进行分类。基于CNN的视觉几何组(VGG)模型用于改进性能度量。考虑作物叶子图像数据集用于训练和测试模型。计算并监测准确率、灵敏度、特异度精密度、召回率和f1评分等性能测量参数。研究提出的模型的主要目的是使性能的持续改进。所设计的模型对患病叶片的分类精度更高。在实验中,提出的研究已经达到了98.40%的葡萄和95.71%的西红柿的准确率。这项提议的研究直接支持了农业粮食产量的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG

In recent times, the use of artificial intelligence (AI) in agriculture has become the most important. The technology adoption in agriculture if creatively approached. Controlling on the diseased leaves during the growing stages of crops is a crucial step. The disease detection, classification, and analysis of diseased leaves at an early stage, as well as possible solutions, are always helpful in agricultural progress. The disease detection and classification of different crops, especially tomatoes and grapes, is a major emphasis of our proposed research. The important objective is to forecast the sort of illness that would affect grapes and tomato leaves at an early stage. The Convolutional Neural Network (CNN) methods are used for detecting Multi-Crops Leaf Disease (MCLD). The features extraction of images using a deep learning-based model classified the sick and healthy leaves. The CNN based Visual Geometry Group (VGG) model is used for improved performance measures. The crops leaves images dataset is considered for training and testing the model. The performance measure parameters, i.e., accuracy, sensitivity, specificity precision, recall and F1-score were calculated and monitored. The main objective of research with the proposed model is to make on-going improvements in the performance. The designed model classifies disease-affected leaves with greater accuracy. In the experiment proposed research has achieved an accuracy of 98.40% of grapes and 95.71% of tomatoes. The proposed research directly supports increasing food production in agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogenous property awared chicken woody breast classification and hardness regression Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1