{"title":"基于自动驾驶汽车数据的实时安全分析:一个贝叶斯层次极值模型","authors":"A. Kamel, T. Sayed, Chuanyun Fu","doi":"10.1080/21680566.2022.2135634","DOIUrl":null,"url":null,"abstract":"This study proposes an approach for real-time road network safety analysis using autonomous vehicles (AVs) generated data. The approach utilises a Bayesian hierarchical spatial random parameter extreme value model (BHSRP). The model simultaneously addresses the scarcity and non-stationarity of conflict extremes and unobserved spatial heterogeneity. Two real-time safety metrics are estimated: the risk of crash (RC) and return level (RL). The RC and RL were applied to three months AVs data for evaluating the real-time safety level of an urban corridor in Palo Alto, California. The indicator time to collision (TTC) was used to characterise traffic conflicts. The conflict extreme was defined as the maxima of negated TTC in a 20-min interval (block). The results show that RC can differentiate the block-level risk level, while RL can reflect safety levels among blocks. For the RC, the hot (crash risk prone) segments and intersections are associated with more severe conflict frequency.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Real-time safety analysis using autonomous vehicle data: a Bayesian hierarchical extreme value model\",\"authors\":\"A. Kamel, T. Sayed, Chuanyun Fu\",\"doi\":\"10.1080/21680566.2022.2135634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes an approach for real-time road network safety analysis using autonomous vehicles (AVs) generated data. The approach utilises a Bayesian hierarchical spatial random parameter extreme value model (BHSRP). The model simultaneously addresses the scarcity and non-stationarity of conflict extremes and unobserved spatial heterogeneity. Two real-time safety metrics are estimated: the risk of crash (RC) and return level (RL). The RC and RL were applied to three months AVs data for evaluating the real-time safety level of an urban corridor in Palo Alto, California. The indicator time to collision (TTC) was used to characterise traffic conflicts. The conflict extreme was defined as the maxima of negated TTC in a 20-min interval (block). The results show that RC can differentiate the block-level risk level, while RL can reflect safety levels among blocks. For the RC, the hot (crash risk prone) segments and intersections are associated with more severe conflict frequency.\",\"PeriodicalId\":48872,\"journal\":{\"name\":\"Transportmetrica B-Transport Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica B-Transport Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21680566.2022.2135634\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2022.2135634","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Real-time safety analysis using autonomous vehicle data: a Bayesian hierarchical extreme value model
This study proposes an approach for real-time road network safety analysis using autonomous vehicles (AVs) generated data. The approach utilises a Bayesian hierarchical spatial random parameter extreme value model (BHSRP). The model simultaneously addresses the scarcity and non-stationarity of conflict extremes and unobserved spatial heterogeneity. Two real-time safety metrics are estimated: the risk of crash (RC) and return level (RL). The RC and RL were applied to three months AVs data for evaluating the real-time safety level of an urban corridor in Palo Alto, California. The indicator time to collision (TTC) was used to characterise traffic conflicts. The conflict extreme was defined as the maxima of negated TTC in a 20-min interval (block). The results show that RC can differentiate the block-level risk level, while RL can reflect safety levels among blocks. For the RC, the hot (crash risk prone) segments and intersections are associated with more severe conflict frequency.
期刊介绍:
Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”.
Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data.
The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.