电子应用中使用反应膜的快速和局部焊接

R. Khazaka, D. Martineau, T. Youssef, Thanh-Long Le, S. Azzopardi
{"title":"电子应用中使用反应膜的快速和局部焊接","authors":"R. Khazaka, D. Martineau, T. Youssef, Thanh-Long Le, S. Azzopardi","doi":"10.4071/imaps.955217","DOIUrl":null,"url":null,"abstract":"\n The rapid and localized heating techniques allow the joining of temperature-sensitive materials and components without thermal induced damage commonly encountered when high-temperature solder reflow processes are used. This is also advantageous for making assemblies with materials having a large difference in the coefficient of thermal expansion without induced bowing or cracking. The use of exothermic reactive foil sandwiched between solder preforms is a promising local and rapid soldering process because it does not require any external heat source. The reactive foil is formed from alternatively stacked nanolayers of Ni and Al until it reaches the total film thickness. Once the film is activated by using an external power source, a reaction takes place and releases such an amount of energy that is transferred to the solder preforms. If this amount of energy is high enough, solder preforms melt and insure the adhesion between the materials of the assembly. The influences of the applied pressure, the reactive film (RF) thickness as well as the solder, and the attached materials chemical composition and thickness were investigated. It was shown that the applied pressure during the process has a strong effect on the joint initial quality with voids ratio decreases from 64% to 26% for pressure values between .5 and 100 kPa, respectively. This can be explained by the improvement of the solder flow under higher pressure leading to a better surface wettability and voids elimination. Otherwise, the joint quality was found to be improved once the solder melting duration is increased. This relationship was observed when the thickness of the reactive foil is increased (additional induced energy) or the thickness of solders, Cu, and/or Si is decreased (less energy consumption). The microstructure of the AuSn joint achieved using the RFs shows very fine phase distribution compared with the one obtained using conventional solder reflow process in the oven because of high cooling rate. The mechanical properties of the joint were evaluated using shear tests performed on 350-μm-thick silicon diodes assembled on active metal brazed substrates under a pressure of 100 kPa. The RFs were 60 μm thick and sandwiched between two 25-μm-thick 96.5Sn3Ag.5Cu (SAC) preforms. The voids ratio was about 37% for the tested samples and shear strength values above 9.5 MPa were achieved which remains largely higher than MIL-STD-883H requirements. Finally, the process impact on the electrical properties of the assembled diodes was compared with a commonly used solder reflow assembly and the results show a negligible variation.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and Localized Soldering Using Reactive Films for Electronic Applications\",\"authors\":\"R. Khazaka, D. Martineau, T. Youssef, Thanh-Long Le, S. Azzopardi\",\"doi\":\"10.4071/imaps.955217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The rapid and localized heating techniques allow the joining of temperature-sensitive materials and components without thermal induced damage commonly encountered when high-temperature solder reflow processes are used. This is also advantageous for making assemblies with materials having a large difference in the coefficient of thermal expansion without induced bowing or cracking. The use of exothermic reactive foil sandwiched between solder preforms is a promising local and rapid soldering process because it does not require any external heat source. The reactive foil is formed from alternatively stacked nanolayers of Ni and Al until it reaches the total film thickness. Once the film is activated by using an external power source, a reaction takes place and releases such an amount of energy that is transferred to the solder preforms. If this amount of energy is high enough, solder preforms melt and insure the adhesion between the materials of the assembly. The influences of the applied pressure, the reactive film (RF) thickness as well as the solder, and the attached materials chemical composition and thickness were investigated. It was shown that the applied pressure during the process has a strong effect on the joint initial quality with voids ratio decreases from 64% to 26% for pressure values between .5 and 100 kPa, respectively. This can be explained by the improvement of the solder flow under higher pressure leading to a better surface wettability and voids elimination. Otherwise, the joint quality was found to be improved once the solder melting duration is increased. This relationship was observed when the thickness of the reactive foil is increased (additional induced energy) or the thickness of solders, Cu, and/or Si is decreased (less energy consumption). The microstructure of the AuSn joint achieved using the RFs shows very fine phase distribution compared with the one obtained using conventional solder reflow process in the oven because of high cooling rate. The mechanical properties of the joint were evaluated using shear tests performed on 350-μm-thick silicon diodes assembled on active metal brazed substrates under a pressure of 100 kPa. The RFs were 60 μm thick and sandwiched between two 25-μm-thick 96.5Sn3Ag.5Cu (SAC) preforms. The voids ratio was about 37% for the tested samples and shear strength values above 9.5 MPa were achieved which remains largely higher than MIL-STD-883H requirements. Finally, the process impact on the electrical properties of the assembled diodes was compared with a commonly used solder reflow assembly and the results show a negligible variation.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/imaps.955217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/imaps.955217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

快速和局部加热技术允许温度敏感材料和部件的连接,而不会在使用高温回流焊工艺时常见的热致损伤。这对于用热膨胀系数差异较大的材料制造组件而不引起弯曲或破裂也是有利的。夹在焊料预制件之间的放热反应箔的使用是一种很有前途的局部快速焊接工艺,因为它不需要任何外部热源。反应箔由交替堆叠的Ni和Al的纳米层形成,直到达到总膜厚度。一旦通过使用外部电源激活薄膜,就会发生反应,并释放出转移到焊料预成型件的能量。如果这个能量足够高,焊料预制件就会熔化,并确保组件材料之间的粘附性。研究了所施加的压力、反应膜(RF)厚度、焊料以及所附材料的化学成分和厚度的影响。研究表明,在该过程中施加的压力对接头的初始质量有很大影响,当压力值在.5和100kPa之间时,空隙率分别从64%下降到26%。这可以通过在更高压力下改善焊料流动来解释,从而导致更好的表面润湿性和空隙消除。否则,一旦焊料熔化持续时间增加,接头质量就会得到改善。当反应箔的厚度增加(额外的感应能量)或焊料、Cu和/或Si的厚度减少(较少的能量消耗)时,观察到了这种关系。使用RF获得的AuSn接头的微观结构与在烘箱中使用传统回流焊工艺获得的微观结构相比显示出非常精细的相分布,这是因为高冷却速率。在100kPa的压力下,对组装在活性金属钎焊基底上的350μm厚硅二极管进行剪切试验,评估了接头的机械性能。RFs厚度为60μm,夹在两个25μm厚的96.5Sn3Ag.5Cu(SAC)预成型件之间。测试样品的空隙率约为37%,剪切强度值达到9.5MPa以上,仍大大高于MIL-STD-883H的要求。最后,将工艺对组装二极管电性能的影响与常用的回流焊组件进行了比较,结果显示变化可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid and Localized Soldering Using Reactive Films for Electronic Applications
The rapid and localized heating techniques allow the joining of temperature-sensitive materials and components without thermal induced damage commonly encountered when high-temperature solder reflow processes are used. This is also advantageous for making assemblies with materials having a large difference in the coefficient of thermal expansion without induced bowing or cracking. The use of exothermic reactive foil sandwiched between solder preforms is a promising local and rapid soldering process because it does not require any external heat source. The reactive foil is formed from alternatively stacked nanolayers of Ni and Al until it reaches the total film thickness. Once the film is activated by using an external power source, a reaction takes place and releases such an amount of energy that is transferred to the solder preforms. If this amount of energy is high enough, solder preforms melt and insure the adhesion between the materials of the assembly. The influences of the applied pressure, the reactive film (RF) thickness as well as the solder, and the attached materials chemical composition and thickness were investigated. It was shown that the applied pressure during the process has a strong effect on the joint initial quality with voids ratio decreases from 64% to 26% for pressure values between .5 and 100 kPa, respectively. This can be explained by the improvement of the solder flow under higher pressure leading to a better surface wettability and voids elimination. Otherwise, the joint quality was found to be improved once the solder melting duration is increased. This relationship was observed when the thickness of the reactive foil is increased (additional induced energy) or the thickness of solders, Cu, and/or Si is decreased (less energy consumption). The microstructure of the AuSn joint achieved using the RFs shows very fine phase distribution compared with the one obtained using conventional solder reflow process in the oven because of high cooling rate. The mechanical properties of the joint were evaluated using shear tests performed on 350-μm-thick silicon diodes assembled on active metal brazed substrates under a pressure of 100 kPa. The RFs were 60 μm thick and sandwiched between two 25-μm-thick 96.5Sn3Ag.5Cu (SAC) preforms. The voids ratio was about 37% for the tested samples and shear strength values above 9.5 MPa were achieved which remains largely higher than MIL-STD-883H requirements. Finally, the process impact on the electrical properties of the assembled diodes was compared with a commonly used solder reflow assembly and the results show a negligible variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
期刊最新文献
Study on the Manufacturability of X Dimension Fan Out Integration Package with Organic RDLs (XDFOI-O) AlGaN High Electron Mobility Transistor for High-Temperature Logic A Novel Approach for Characterizing Epoxy Mold Compound High Temperature Swelling Dual-Band Dual-Polarized Antennas for 5G mmWave Base Stations An Evaluation on the Mechanical and Conductive Performance of Electrically Conductive Film Adhesives with Glass Fabric Carriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1