阅读新闻而非书籍:通过深度文本挖掘预测企业的长期财务业绩

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Management Information Systems Pub Date : 2022-05-17 DOI:10.1145/3533018
Shuang (Sophie) Zhai, Zhu Zhang
{"title":"阅读新闻而非书籍:通过深度文本挖掘预测企业的长期财务业绩","authors":"Shuang (Sophie) Zhai, Zhu Zhang","doi":"10.1145/3533018","DOIUrl":null,"url":null,"abstract":"In this paper, we show textual data from firm-related events in news articles can effectively predict various firm financial ratios, with or without historical financial ratios. We exploit state-of-the-art neural architectures, including pseudo-event embeddings, Long Short-Term Memory Networks, and attention mechanisms. Our news-powered deep learning models are shown to outperform standard econometric models operating on precise accounting historical data. We also observe forecasting quality improvement when integrating textual and numerical data streams. In addition, we provide in-depth case studies for model explainability and transparency. Our forecasting models, model attention maps, and firm embeddings benefit various stakeholders with quality predictions and explainable insights. Our proposed models can be applied both when numerically historical data is or is not available.","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":"14 1","pages":"1 - 37"},"PeriodicalIF":2.5000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Read the News, Not the Books: Forecasting Firms’ Long-term Financial Performance via Deep Text Mining\",\"authors\":\"Shuang (Sophie) Zhai, Zhu Zhang\",\"doi\":\"10.1145/3533018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show textual data from firm-related events in news articles can effectively predict various firm financial ratios, with or without historical financial ratios. We exploit state-of-the-art neural architectures, including pseudo-event embeddings, Long Short-Term Memory Networks, and attention mechanisms. Our news-powered deep learning models are shown to outperform standard econometric models operating on precise accounting historical data. We also observe forecasting quality improvement when integrating textual and numerical data streams. In addition, we provide in-depth case studies for model explainability and transparency. Our forecasting models, model attention maps, and firm embeddings benefit various stakeholders with quality predictions and explainable insights. Our proposed models can be applied both when numerically historical data is or is not available.\",\"PeriodicalId\":45274,\"journal\":{\"name\":\"ACM Transactions on Management Information Systems\",\"volume\":\"14 1\",\"pages\":\"1 - 37\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Management Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们展示了新闻文章中与企业相关事件的文本数据可以有效地预测各种企业财务比率,无论是否有历史财务比率。我们开发了最先进的神经架构,包括伪事件嵌入、长短期记忆网络和注意力机制。我们的新闻驱动的深度学习模型被证明优于基于精确会计历史数据的标准计量经济学模型。当整合文本和数字数据流时,我们还观察到预测质量的提高。此外,我们还为模型的可解释性和透明度提供了深入的案例研究。我们的预测模型、模型注意力图和公司嵌入通过高质量的预测和可解释的见解使各种利益相关者受益。当数值历史数据可用或不可用时,我们提出的模型都可以应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Read the News, Not the Books: Forecasting Firms’ Long-term Financial Performance via Deep Text Mining
In this paper, we show textual data from firm-related events in news articles can effectively predict various firm financial ratios, with or without historical financial ratios. We exploit state-of-the-art neural architectures, including pseudo-event embeddings, Long Short-Term Memory Networks, and attention mechanisms. Our news-powered deep learning models are shown to outperform standard econometric models operating on precise accounting historical data. We also observe forecasting quality improvement when integrating textual and numerical data streams. In addition, we provide in-depth case studies for model explainability and transparency. Our forecasting models, model attention maps, and firm embeddings benefit various stakeholders with quality predictions and explainable insights. Our proposed models can be applied both when numerically historical data is or is not available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Management Information Systems
ACM Transactions on Management Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.30
自引率
20.00%
发文量
60
期刊最新文献
From Dissonance to Dialogue: A Token-Based Approach to Bridge the Gap Between Manufacturers and Customers A Process Mining Method for Inter-organizational Business Process Integration Introduction to the Special Issue on IT-enabled Business Management and Decision Making in the (Post) Covid-19 Era Non-Monotonic Generation of Knowledge Paths for Context Understanding How Should Enterprises Quantify and Analyze (Multi-Party) APT Cyber-Risk Exposure in their Industrial IoT Network?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1