Xingliang Dai , Junjuan Fan , Dongdong Liu , Huaixu Li , Lei Shu , Peng Gao , Senhua Chen , Xianwen Wang
{"title":"海洋天然产物木霉素B通过IL-6介导的STAT3/JAK信号通路抑制人脑胶质瘤细胞增殖并促进细胞凋亡","authors":"Xingliang Dai , Junjuan Fan , Dongdong Liu , Huaixu Li , Lei Shu , Peng Gao , Senhua Chen , Xianwen Wang","doi":"10.1016/j.smaim.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Glioma is the most common malignant tumor of the central nervous system. Drug-assisted chemotherapy is an important adjuvant treatment post-surgery, but currently, effective chemotherapy drugs for glioma are lacking. Expediting new and effective chemotherapy drugs is a persistent problem that needs to be solved. In this study, a tetramic acid derivative, trichobotrysin B, was extracted from the ascidian-derived fungus <em>Trichobotrys effusa</em> 4729 (denoted ADF<sub>Te4729</sub>). There is significant cytotoxicity of trichobotrysin B against glioma proliferation, which triggers apoptosis and cell cycle arrest. Furthermore, studies have found that trichobotrysin B inhibits glioma proliferation in a manner closely related to IL-6-mediated STAT3 phosphorylation and JAK2 activation. In conclusion, this study demonstrates that the small-molecule compound trichobotrysin B inhibits glioma proliferation and induces apoptosis through the IL-6-mediated STAT3/JAK2 signaling pathway, suggesting that trichobotrysin B has potential antiglioma efficiency and provides a new way to explore new small-molecule drugs with anticancer effects.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 66-74"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The marine natural product trichobotrysin B inhibits proliferation and promotes apoptosis of human glioma cells via the IL-6-mediated STAT3/JAK signaling pathway\",\"authors\":\"Xingliang Dai , Junjuan Fan , Dongdong Liu , Huaixu Li , Lei Shu , Peng Gao , Senhua Chen , Xianwen Wang\",\"doi\":\"10.1016/j.smaim.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glioma is the most common malignant tumor of the central nervous system. Drug-assisted chemotherapy is an important adjuvant treatment post-surgery, but currently, effective chemotherapy drugs for glioma are lacking. Expediting new and effective chemotherapy drugs is a persistent problem that needs to be solved. In this study, a tetramic acid derivative, trichobotrysin B, was extracted from the ascidian-derived fungus <em>Trichobotrys effusa</em> 4729 (denoted ADF<sub>Te4729</sub>). There is significant cytotoxicity of trichobotrysin B against glioma proliferation, which triggers apoptosis and cell cycle arrest. Furthermore, studies have found that trichobotrysin B inhibits glioma proliferation in a manner closely related to IL-6-mediated STAT3 phosphorylation and JAK2 activation. In conclusion, this study demonstrates that the small-molecule compound trichobotrysin B inhibits glioma proliferation and induces apoptosis through the IL-6-mediated STAT3/JAK2 signaling pathway, suggesting that trichobotrysin B has potential antiglioma efficiency and provides a new way to explore new small-molecule drugs with anticancer effects.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":\"5 1\",\"pages\":\"Pages 66-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590183423000388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183423000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
The marine natural product trichobotrysin B inhibits proliferation and promotes apoptosis of human glioma cells via the IL-6-mediated STAT3/JAK signaling pathway
Glioma is the most common malignant tumor of the central nervous system. Drug-assisted chemotherapy is an important adjuvant treatment post-surgery, but currently, effective chemotherapy drugs for glioma are lacking. Expediting new and effective chemotherapy drugs is a persistent problem that needs to be solved. In this study, a tetramic acid derivative, trichobotrysin B, was extracted from the ascidian-derived fungus Trichobotrys effusa 4729 (denoted ADFTe4729). There is significant cytotoxicity of trichobotrysin B against glioma proliferation, which triggers apoptosis and cell cycle arrest. Furthermore, studies have found that trichobotrysin B inhibits glioma proliferation in a manner closely related to IL-6-mediated STAT3 phosphorylation and JAK2 activation. In conclusion, this study demonstrates that the small-molecule compound trichobotrysin B inhibits glioma proliferation and induces apoptosis through the IL-6-mediated STAT3/JAK2 signaling pathway, suggesting that trichobotrysin B has potential antiglioma efficiency and provides a new way to explore new small-molecule drugs with anticancer effects.