fpso二阶侧倾运动模拟近似方法的比较评价

IF 0.7 Q4 ENGINEERING, OCEAN Ocean Systems Engineering-An International Journal Pub Date : 2017-03-01 DOI:10.12989/OSE.2017.7.1.053
Abhilash Somayajula, J. Falzarano
{"title":"fpso二阶侧倾运动模拟近似方法的比较评价","authors":"Abhilash Somayajula, J. Falzarano","doi":"10.12989/OSE.2017.7.1.053","DOIUrl":null,"url":null,"abstract":"Ship shaped FPSO (Floating Production, Storage and Offloading) units are the most commonly used floating production units to extract hydrocarbons from reservoirs under the seabed. These \nstructures are usually much larger than general cargo ships and have their natural frequency outside the wave frequency range. This results in the response to first order wave forces acting on the hull to be negligible. However, second order difference frequency forces start to significantly impact the motions of the structure. When the difference frequency between wave components matches the roll natural frequency, the structure experiences a significant roll motion which is also termed as second order roll. \nThis paper describes the theory and numerical implementation behind the calculation of second order forces and motions of any general floating structure subjected to waves. The numerical implementation is validated in zero speed case against the commercial code OrcaFlex. The paper also describes in detail the popular approximations used to simplify the computation of second order forces and provides a discussion \non the limitations of each approximation.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"7 1","pages":"53-74"},"PeriodicalIF":0.7000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A comparative assessment of approximate methods to simulate second order roll motion of FPSOs\",\"authors\":\"Abhilash Somayajula, J. Falzarano\",\"doi\":\"10.12989/OSE.2017.7.1.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship shaped FPSO (Floating Production, Storage and Offloading) units are the most commonly used floating production units to extract hydrocarbons from reservoirs under the seabed. These \\nstructures are usually much larger than general cargo ships and have their natural frequency outside the wave frequency range. This results in the response to first order wave forces acting on the hull to be negligible. However, second order difference frequency forces start to significantly impact the motions of the structure. When the difference frequency between wave components matches the roll natural frequency, the structure experiences a significant roll motion which is also termed as second order roll. \\nThis paper describes the theory and numerical implementation behind the calculation of second order forces and motions of any general floating structure subjected to waves. The numerical implementation is validated in zero speed case against the commercial code OrcaFlex. The paper also describes in detail the popular approximations used to simplify the computation of second order forces and provides a discussion \\non the limitations of each approximation.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"7 1\",\"pages\":\"53-74\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2017.7.1.053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2017.7.1.053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 5

摘要

船形FPSO(浮式生产、储存和卸载)装置是最常用的浮式生产装置,用于从海底油藏中提取碳氢化合物。这些结构通常比一般货船大得多,其固有频率在波浪频率范围之外。这导致对作用在船体上的一阶波浪力的响应可以忽略不计。然而,二阶差频力开始显著影响结构的运动。当波分量之间的差频与横摇固有频率相匹配时,结构会发生明显的横摇运动,这种运动也称为二阶横摇。本文介绍了一般浮式结构在波浪作用下二阶力和运动计算的理论和数值实现。针对商用代码OrcaFlex,在零速度情况下对数值实现进行了验证。本文还详细描述了用于简化二阶力计算的常用近似,并对每种近似的局限性进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative assessment of approximate methods to simulate second order roll motion of FPSOs
Ship shaped FPSO (Floating Production, Storage and Offloading) units are the most commonly used floating production units to extract hydrocarbons from reservoirs under the seabed. These structures are usually much larger than general cargo ships and have their natural frequency outside the wave frequency range. This results in the response to first order wave forces acting on the hull to be negligible. However, second order difference frequency forces start to significantly impact the motions of the structure. When the difference frequency between wave components matches the roll natural frequency, the structure experiences a significant roll motion which is also termed as second order roll. This paper describes the theory and numerical implementation behind the calculation of second order forces and motions of any general floating structure subjected to waves. The numerical implementation is validated in zero speed case against the commercial code OrcaFlex. The paper also describes in detail the popular approximations used to simplify the computation of second order forces and provides a discussion on the limitations of each approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
22.20%
发文量
0
期刊介绍: The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.
期刊最新文献
A time-domain method for analyzing the ship roll stabilization based on active fin control Performance evaluation of a seawater exchange breakwater with Helmholtz resonator using OpenFOAM Wheel over point mathematical model Assessment of global wave forces and moments on porous vertical barriers in random wave fields Optimum design of miniature platforms for marginal fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1