AZ91D镁合金在3.5中浸泡前几个小时的腐蚀过程研究 wt.%NaCl溶液

IF 1.5 Q4 ELECTROCHEMISTRY International Journal of Corrosion Pub Date : 2018-05-29 DOI:10.1155/2018/8785154
V. Pinela, L. A. de Oliveira, M. C. L. de Oliveira, R. A. Antunes
{"title":"AZ91D镁合金在3.5中浸泡前几个小时的腐蚀过程研究 wt.%NaCl溶液","authors":"V. Pinela, L. A. de Oliveira, M. C. L. de Oliveira, R. A. Antunes","doi":"10.1155/2018/8785154","DOIUrl":null,"url":null,"abstract":"The AZ91D magnesium alloy was immersed in 3.5 wt.% NaCl solution at room temperature for times ranging from 1 minute up to 72 hours. The aim was to investigate the evolution of the corrosion process using confocal laser scanning microscopy (CLSM), electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy. The microstructure of the as-received alloy was initially characterized by optical microscopy and scanning electron microscopy (SEM). The crystalline phases were identified by X-ray diffractometry. The main phases were primary-α, eutectic-α, and β (Mg17Al12). Vickers microhardness markings were made on the surface of one etched sample to facilitate the identification of the same region at each different immersion time, thus enabling the observation of the corrosion process evolution. Corrosion initiates at the grain boundaries of the eutectic microconstituent and, then, propagates through primary α-grains. The β-phase was less severely attacked.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/8785154","citationCount":"8","resultStr":"{\"title\":\"Study of the Corrosion Process of AZ91D Magnesium Alloy during the First Hours of Immersion in 3.5 wt.% NaCl Solution\",\"authors\":\"V. Pinela, L. A. de Oliveira, M. C. L. de Oliveira, R. A. Antunes\",\"doi\":\"10.1155/2018/8785154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AZ91D magnesium alloy was immersed in 3.5 wt.% NaCl solution at room temperature for times ranging from 1 minute up to 72 hours. The aim was to investigate the evolution of the corrosion process using confocal laser scanning microscopy (CLSM), electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy. The microstructure of the as-received alloy was initially characterized by optical microscopy and scanning electron microscopy (SEM). The crystalline phases were identified by X-ray diffractometry. The main phases were primary-α, eutectic-α, and β (Mg17Al12). Vickers microhardness markings were made on the surface of one etched sample to facilitate the identification of the same region at each different immersion time, thus enabling the observation of the corrosion process evolution. Corrosion initiates at the grain boundaries of the eutectic microconstituent and, then, propagates through primary α-grains. The β-phase was less severely attacked.\",\"PeriodicalId\":13893,\"journal\":{\"name\":\"International Journal of Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/8785154\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/8785154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8785154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 8

摘要

将AZ91D镁合金浸泡在3.5 wt中。% NaCl溶液,室温下,时间范围从1分钟到72小时。目的是利用共聚焦激光扫描显微镜(CLSM)、电化学阻抗谱和x射线光电子能谱来研究腐蚀过程的演变。通过光学显微镜和扫描电镜对合金的微观组织进行了初步表征。用x射线衍射法鉴定了晶相。主要相为初生-α、共晶-α和β (Mg17Al12)。在一个蚀刻样品的表面做维氏显微硬度标记,以便在每次不同浸泡时间下识别同一区域,从而观察腐蚀过程的演变。腐蚀始于共晶显微组织的晶界,然后通过初生α-晶粒扩展。β相受到的攻击较轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the Corrosion Process of AZ91D Magnesium Alloy during the First Hours of Immersion in 3.5 wt.% NaCl Solution
The AZ91D magnesium alloy was immersed in 3.5 wt.% NaCl solution at room temperature for times ranging from 1 minute up to 72 hours. The aim was to investigate the evolution of the corrosion process using confocal laser scanning microscopy (CLSM), electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy. The microstructure of the as-received alloy was initially characterized by optical microscopy and scanning electron microscopy (SEM). The crystalline phases were identified by X-ray diffractometry. The main phases were primary-α, eutectic-α, and β (Mg17Al12). Vickers microhardness markings were made on the surface of one etched sample to facilitate the identification of the same region at each different immersion time, thus enabling the observation of the corrosion process evolution. Corrosion initiates at the grain boundaries of the eutectic microconstituent and, then, propagates through primary α-grains. The β-phase was less severely attacked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
8
审稿时长
14 weeks
期刊最新文献
Empirical Study of the Effect of Nanocoolant Particles on Corrosion Rate of 316 Stainless Steel Walk-Through Corrosion Assessment of Slurry Pipeline Using Machine Learning Corrosion Behaviour of a Cr2O3 Coating on Mild Steel in Synthetic Mine Water The Inhibitory Properties of the Ambroxol Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Medium Investigation of Wall Thickness, Corrosion, and Deposits in Industrial Pipelines Using Radiographic Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1