利用分段注入欺骗恶意软件分类

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine learning and knowledge extraction Pub Date : 2023-01-16 DOI:10.3390/make5010009
Adeilson Antonio da Silva, Maurício Pamplona Segundo
{"title":"利用分段注入欺骗恶意软件分类","authors":"Adeilson Antonio da Silva, Maurício Pamplona Segundo","doi":"10.3390/make5010009","DOIUrl":null,"url":null,"abstract":"We investigate how to modify executable files to deceive malware classification systems. This work’s main contribution is a methodology to inject bytes across a malware file randomly and use it both as an attack to decrease classification accuracy but also as a defensive method, augmenting the data available for training. It respects the operating system file format to make sure the malware will still execute after our injection and will not change its behavior. We reproduced five state-of-the-art malware classification approaches to evaluate our injection scheme: one based on Global Image Descriptor (GIST) + K-Nearest-Neighbors (KNN), three Convolutional Neural Network (CNN) variations and one Gated CNN. We performed our experiments on a public dataset with 9339 malware samples from 25 different families. Our results show that a mere increase of 7% in the malware size causes an accuracy drop between 25% and 40% for malware family classification. They show that an automatic malware classification system may not be as trustworthy as initially reported in the literature. We also evaluate using modified malware alongside the original ones to increase networks robustness against the mentioned attacks. The results show that a combination of reordering malware sections and injecting random data can improve the overall performance of the classification. All the code is publicly available.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Deceiving Malware Classification with Section Injection\",\"authors\":\"Adeilson Antonio da Silva, Maurício Pamplona Segundo\",\"doi\":\"10.3390/make5010009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate how to modify executable files to deceive malware classification systems. This work’s main contribution is a methodology to inject bytes across a malware file randomly and use it both as an attack to decrease classification accuracy but also as a defensive method, augmenting the data available for training. It respects the operating system file format to make sure the malware will still execute after our injection and will not change its behavior. We reproduced five state-of-the-art malware classification approaches to evaluate our injection scheme: one based on Global Image Descriptor (GIST) + K-Nearest-Neighbors (KNN), three Convolutional Neural Network (CNN) variations and one Gated CNN. We performed our experiments on a public dataset with 9339 malware samples from 25 different families. Our results show that a mere increase of 7% in the malware size causes an accuracy drop between 25% and 40% for malware family classification. They show that an automatic malware classification system may not be as trustworthy as initially reported in the literature. We also evaluate using modified malware alongside the original ones to increase networks robustness against the mentioned attacks. The results show that a combination of reordering malware sections and injecting random data can improve the overall performance of the classification. All the code is publicly available.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make5010009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

我们研究如何修改可执行文件来欺骗恶意软件分类系统。这项工作的主要贡献是一种方法,可以在恶意软件文件中随机注入字节,并将其用作降低分类准确性的攻击,也可以用作防御方法,增加可用于训练的数据。它尊重操作系统文件格式,以确保恶意软件在我们注入后仍将执行,并且不会改变其行为。我们复制了五种最先进的恶意软件分类方法来评估我们的注入方案:一种基于全局图像描述符(GIST)+K-最近邻居(KNN),三种卷积神经网络(CNN)变体和一种门控CNN。我们在一个公共数据集上进行了实验,该数据集包含来自25个不同家族的9339个恶意软件样本。我们的结果表明,恶意软件大小仅增加7%,就会导致恶意软件家族分类的准确率下降25%至40%。他们表明,自动恶意软件分类系统可能不像文献中最初报道的那样值得信赖。我们还评估了在使用原始恶意软件的同时使用修改后的恶意软件,以提高网络对上述攻击的稳健性。结果表明,重新排序恶意软件部分和注入随机数据的组合可以提高分类的整体性能。所有代码都是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Deceiving Malware Classification with Section Injection
We investigate how to modify executable files to deceive malware classification systems. This work’s main contribution is a methodology to inject bytes across a malware file randomly and use it both as an attack to decrease classification accuracy but also as a defensive method, augmenting the data available for training. It respects the operating system file format to make sure the malware will still execute after our injection and will not change its behavior. We reproduced five state-of-the-art malware classification approaches to evaluate our injection scheme: one based on Global Image Descriptor (GIST) + K-Nearest-Neighbors (KNN), three Convolutional Neural Network (CNN) variations and one Gated CNN. We performed our experiments on a public dataset with 9339 malware samples from 25 different families. Our results show that a mere increase of 7% in the malware size causes an accuracy drop between 25% and 40% for malware family classification. They show that an automatic malware classification system may not be as trustworthy as initially reported in the literature. We also evaluate using modified malware alongside the original ones to increase networks robustness against the mentioned attacks. The results show that a combination of reordering malware sections and injecting random data can improve the overall performance of the classification. All the code is publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data A Data Mining Approach for Health Transport Demand Predicting Wind Comfort in an Urban Area: A Comparison of a Regression- with a Classification-CNN for General Wind Rose Statistics An Evaluative Baseline for Sentence-Level Semantic Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1