麦芽糖生物传感器的定量及麦芽糖酶活性的测定

E. Emelyanova
{"title":"麦芽糖生物传感器的定量及麦芽糖酶活性的测定","authors":"E. Emelyanova","doi":"10.25082/AB.2019.01.001","DOIUrl":null,"url":null,"abstract":"The aim of this study was to create a laboratory model of an amperometric microbial biosensor for maltose quantification in the presence and absence of starch and to estimate the use of the model in the study of maltase activity of the culture-receptor. The biosensor for maltose was developed on the basis of a Clark-type oxygen electrode, coupled with a bioreceptor, which contained bacterial cells immobilized on the membrane. The determination of maltose concentration was based on measuring the rate of electrode current change in response to addition of the analyte. The detection limit of the biosensor was 1 µM maltose, a linear interval of standard curve was observed from 14 µM up to 1.9 mM of maltose. The microbial biosensor demonstrated good sensitivity to maltose, 36.02 nА (M·s)-1. Combination of bioreceptors on the basis of fungus and bacterium allowed of using the biosensor for quantification of maltose in the presence of starch. Changes in metabolism of the culture-receptor had an effect on the biosensor response. It indicated that the developed model was a tool of simple construction and easy-to-use in the study of maltase activity of the immobilized culture-receptor.","PeriodicalId":69883,"journal":{"name":"生物芯片进展(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biosensor for maltose quantification and estimation of maltase activity\",\"authors\":\"E. Emelyanova\",\"doi\":\"10.25082/AB.2019.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to create a laboratory model of an amperometric microbial biosensor for maltose quantification in the presence and absence of starch and to estimate the use of the model in the study of maltase activity of the culture-receptor. The biosensor for maltose was developed on the basis of a Clark-type oxygen electrode, coupled with a bioreceptor, which contained bacterial cells immobilized on the membrane. The determination of maltose concentration was based on measuring the rate of electrode current change in response to addition of the analyte. The detection limit of the biosensor was 1 µM maltose, a linear interval of standard curve was observed from 14 µM up to 1.9 mM of maltose. The microbial biosensor demonstrated good sensitivity to maltose, 36.02 nА (M·s)-1. Combination of bioreceptors on the basis of fungus and bacterium allowed of using the biosensor for quantification of maltose in the presence of starch. Changes in metabolism of the culture-receptor had an effect on the biosensor response. It indicated that the developed model was a tool of simple construction and easy-to-use in the study of maltase activity of the immobilized culture-receptor.\",\"PeriodicalId\":69883,\"journal\":{\"name\":\"生物芯片进展(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物芯片进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.25082/AB.2019.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物芯片进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.25082/AB.2019.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是创建一个安培微生物生物传感器的实验室模型,用于在存在和不存在淀粉的情况下定量麦芽糖,并评估该模型在研究培养受体的麦芽糖酶活性中的用途。麦芽糖生物传感器是在克拉克型氧电极的基础上开发的,该氧电极与生物接收器耦合,该生物接收器包含固定在膜上的细菌细胞。麦芽糖浓度的测定是基于测量电极电流响应于分析物的添加而变化的速率。生物传感器的检测限为1µM麦芽糖,在14µM至1.9mM的麦芽糖范围内观察到标准曲线的线性区间。该微生物生物传感器对36.02nА(M·s)-1麦芽糖具有良好的敏感性。基于真菌和细菌的生物受体的组合允许在淀粉存在的情况下使用生物传感器来定量麦芽糖。培养物受体代谢的变化对生物传感器的反应有影响。结果表明,该模型结构简单,可用于固定化培养受体麦芽糖酶活性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biosensor for maltose quantification and estimation of maltase activity
The aim of this study was to create a laboratory model of an amperometric microbial biosensor for maltose quantification in the presence and absence of starch and to estimate the use of the model in the study of maltase activity of the culture-receptor. The biosensor for maltose was developed on the basis of a Clark-type oxygen electrode, coupled with a bioreceptor, which contained bacterial cells immobilized on the membrane. The determination of maltose concentration was based on measuring the rate of electrode current change in response to addition of the analyte. The detection limit of the biosensor was 1 µM maltose, a linear interval of standard curve was observed from 14 µM up to 1.9 mM of maltose. The microbial biosensor demonstrated good sensitivity to maltose, 36.02 nА (M·s)-1. Combination of bioreceptors on the basis of fungus and bacterium allowed of using the biosensor for quantification of maltose in the presence of starch. Changes in metabolism of the culture-receptor had an effect on the biosensor response. It indicated that the developed model was a tool of simple construction and easy-to-use in the study of maltase activity of the immobilized culture-receptor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of gene regulatory elements for biosensing Cellulose based smart sensors Roles of polymer brushes in biological applications A reliable electrochemical sensor developed based on ZnO/SnO₂ nanoparticles modified glassy carbon electrode Biosensor for maltose quantification and estimation of maltase activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1