{"title":"一种用于w-LED应用的新型Eu3+掺杂钽酸盐红色荧光粉的研制","authors":"","doi":"10.1016/j.jre.2023.07.014","DOIUrl":null,"url":null,"abstract":"<div><p>Two novel phosphors LiBa<sub>4(1‒<em>x</em>)</sub>Eu<sub>4<em>x</em></sub>Ta<sub>3</sub>O<sub>12</sub> (H-LBTO:<em>x</em>Eu<sup>3+</sup>) and Li<sub>0.25</sub>Ba<sub>1‒<em>x</em></sub>Eu<sub><em>x</em></sub>Ta<sub>0.75</sub>O<sub>3</sub> (C-LBTO:<em>x</em>Eu<sup>3+</sup>) were prepared successfully by a molten salt method. The transformation between these two structures was realized by changing the sintering temperature or changing the Eu<sup>3+</sup> ions concentration, which was also demonstrated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectra (DRS), and photoluminescence excitation (PLE) analyses. Both the sintering temperature and the Eu<sup>3+</sup> ions doping concentration have significant impact on the formation of the crystal phase. All these phosphors sintered at 1023 K exhibit two major luminescence lines at 594 and 614 nm under near-UV light of 395 nm excitation, corresponding to Eu<sup>3+</sup> ions typical transitions of <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>1</sub> and <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>2</sub>. The optimum concentration of Eu<sup>3+</sup> ions is 9 mol% for C-LBTO:<em>x</em>Eu<sup>3+</sup> samples and the quenching interaction type is the nearest-neighbor ion interaction. The thermal stability of the C-LBTO:0.09Eu<sup>3+</sup> sample was investigated in detail and the device application further suggests that C-LBTO:0.09Eu<sup>3+</sup> can be used as a red phosphor for near-UV excited w-LEDs in lighting.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1479-1488"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel Eu3+-doped tantalate red-emitting phosphor for w-LEDs application\",\"authors\":\"\",\"doi\":\"10.1016/j.jre.2023.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two novel phosphors LiBa<sub>4(1‒<em>x</em>)</sub>Eu<sub>4<em>x</em></sub>Ta<sub>3</sub>O<sub>12</sub> (H-LBTO:<em>x</em>Eu<sup>3+</sup>) and Li<sub>0.25</sub>Ba<sub>1‒<em>x</em></sub>Eu<sub><em>x</em></sub>Ta<sub>0.75</sub>O<sub>3</sub> (C-LBTO:<em>x</em>Eu<sup>3+</sup>) were prepared successfully by a molten salt method. The transformation between these two structures was realized by changing the sintering temperature or changing the Eu<sup>3+</sup> ions concentration, which was also demonstrated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectra (DRS), and photoluminescence excitation (PLE) analyses. Both the sintering temperature and the Eu<sup>3+</sup> ions doping concentration have significant impact on the formation of the crystal phase. All these phosphors sintered at 1023 K exhibit two major luminescence lines at 594 and 614 nm under near-UV light of 395 nm excitation, corresponding to Eu<sup>3+</sup> ions typical transitions of <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>1</sub> and <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>2</sub>. The optimum concentration of Eu<sup>3+</sup> ions is 9 mol% for C-LBTO:<em>x</em>Eu<sup>3+</sup> samples and the quenching interaction type is the nearest-neighbor ion interaction. The thermal stability of the C-LBTO:0.09Eu<sup>3+</sup> sample was investigated in detail and the device application further suggests that C-LBTO:0.09Eu<sup>3+</sup> can be used as a red phosphor for near-UV excited w-LEDs in lighting.</p></div>\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"42 8\",\"pages\":\"Pages 1479-1488\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002072123001953\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123001953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Development of a novel Eu3+-doped tantalate red-emitting phosphor for w-LEDs application
Two novel phosphors LiBa4(1‒x)Eu4xTa3O12 (H-LBTO:xEu3+) and Li0.25Ba1‒xEuxTa0.75O3 (C-LBTO:xEu3+) were prepared successfully by a molten salt method. The transformation between these two structures was realized by changing the sintering temperature or changing the Eu3+ ions concentration, which was also demonstrated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectra (DRS), and photoluminescence excitation (PLE) analyses. Both the sintering temperature and the Eu3+ ions doping concentration have significant impact on the formation of the crystal phase. All these phosphors sintered at 1023 K exhibit two major luminescence lines at 594 and 614 nm under near-UV light of 395 nm excitation, corresponding to Eu3+ ions typical transitions of 5D0→7F1 and 5D0→7F2. The optimum concentration of Eu3+ ions is 9 mol% for C-LBTO:xEu3+ samples and the quenching interaction type is the nearest-neighbor ion interaction. The thermal stability of the C-LBTO:0.09Eu3+ sample was investigated in detail and the device application further suggests that C-LBTO:0.09Eu3+ can be used as a red phosphor for near-UV excited w-LEDs in lighting.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.