{"title":"初始溶剂浓度对聚合物纳米复合材料结构和性能的影响","authors":"Ga Young Kim, Tae Yeon Kong, So Youn Kim","doi":"10.1007/s13367-022-00042-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate how the initial solvent concentration can influence the final structure and property of the polymer nanocomposites (PNCs). To produce the PNCs, nanoparticles (NPs) and polymers are first required to disperse in a good solvent and then the dispersing solvent quickly evaporates. Previous studies found that controlling the evaporation rate of solvents or drying conditions of solution can change the structure of PNCs; however, the colloidal stability of the NP-polymer mixtures depending on the solvent concentrations has not been much considered. In the NP-polymer colloidal mixture as a precursor system of PNC, the microstructure of the NP dispersion is determined by the net interaction between particles, which may sensitively vary depending on the polymer/solvent concentration. The evaporation of the solvent accompanying the PNC manufacturing process results in a continuous change in the component concentration, which means that the interaction between particles can be continuously changed. We found that the varying initial concentrations in NP-polymer mixtures with different amount of the solvent indeed changes the initial dispersion state of the NPs, which ultimately determined the final microstructure and the physical properties of the PNCs.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"34 4","pages":"359 - 367"},"PeriodicalIF":2.2000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of initial solvent concentration on the structure and property of polymer nanocomposites\",\"authors\":\"Ga Young Kim, Tae Yeon Kong, So Youn Kim\",\"doi\":\"10.1007/s13367-022-00042-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigate how the initial solvent concentration can influence the final structure and property of the polymer nanocomposites (PNCs). To produce the PNCs, nanoparticles (NPs) and polymers are first required to disperse in a good solvent and then the dispersing solvent quickly evaporates. Previous studies found that controlling the evaporation rate of solvents or drying conditions of solution can change the structure of PNCs; however, the colloidal stability of the NP-polymer mixtures depending on the solvent concentrations has not been much considered. In the NP-polymer colloidal mixture as a precursor system of PNC, the microstructure of the NP dispersion is determined by the net interaction between particles, which may sensitively vary depending on the polymer/solvent concentration. The evaporation of the solvent accompanying the PNC manufacturing process results in a continuous change in the component concentration, which means that the interaction between particles can be continuously changed. We found that the varying initial concentrations in NP-polymer mixtures with different amount of the solvent indeed changes the initial dispersion state of the NPs, which ultimately determined the final microstructure and the physical properties of the PNCs.</p></div>\",\"PeriodicalId\":683,\"journal\":{\"name\":\"Korea-Australia Rheology Journal\",\"volume\":\"34 4\",\"pages\":\"359 - 367\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea-Australia Rheology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13367-022-00042-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-022-00042-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Effect of initial solvent concentration on the structure and property of polymer nanocomposites
In this study, we investigate how the initial solvent concentration can influence the final structure and property of the polymer nanocomposites (PNCs). To produce the PNCs, nanoparticles (NPs) and polymers are first required to disperse in a good solvent and then the dispersing solvent quickly evaporates. Previous studies found that controlling the evaporation rate of solvents or drying conditions of solution can change the structure of PNCs; however, the colloidal stability of the NP-polymer mixtures depending on the solvent concentrations has not been much considered. In the NP-polymer colloidal mixture as a precursor system of PNC, the microstructure of the NP dispersion is determined by the net interaction between particles, which may sensitively vary depending on the polymer/solvent concentration. The evaporation of the solvent accompanying the PNC manufacturing process results in a continuous change in the component concentration, which means that the interaction between particles can be continuously changed. We found that the varying initial concentrations in NP-polymer mixtures with different amount of the solvent indeed changes the initial dispersion state of the NPs, which ultimately determined the final microstructure and the physical properties of the PNCs.
期刊介绍:
The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.