Roger T. Tomihama , Saharsh Dass , Sally Chen , Sharon C. Kiang
{"title":"血管外科手术中的机器学习和图像分析","authors":"Roger T. Tomihama , Saharsh Dass , Sally Chen , Sharon C. Kiang","doi":"10.1053/j.semvascsurg.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Deep learning, a subset of machine learning within artificial intelligence, has been successful in medical image analysis<span> in vascular surgery. Unlike traditional computer-based segmentation methods that manually extract features from input images, deep learning methods learn image features and classify data without making prior assumptions. Convolutional neural networks, the main type of deep learning for computer vision processing, are neural networks with multilevel architecture and weighted connections between nodes that can “auto-learn” through repeated exposure to training data without manual input or supervision. These networks have numerous applications in vascular surgery imaging analysis, particularly in </span></span>disease classification, object identification, semantic segmentation, and instance segmentation. The purpose of this review article was to review the relevant concepts of machine learning image analysis and its application to the field of vascular surgery.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning and image analysis in vascular surgery\",\"authors\":\"Roger T. Tomihama , Saharsh Dass , Sally Chen , Sharon C. Kiang\",\"doi\":\"10.1053/j.semvascsurg.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Deep learning, a subset of machine learning within artificial intelligence, has been successful in medical image analysis<span> in vascular surgery. Unlike traditional computer-based segmentation methods that manually extract features from input images, deep learning methods learn image features and classify data without making prior assumptions. Convolutional neural networks, the main type of deep learning for computer vision processing, are neural networks with multilevel architecture and weighted connections between nodes that can “auto-learn” through repeated exposure to training data without manual input or supervision. These networks have numerous applications in vascular surgery imaging analysis, particularly in </span></span>disease classification, object identification, semantic segmentation, and instance segmentation. The purpose of this review article was to review the relevant concepts of machine learning image analysis and its application to the field of vascular surgery.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895796723000534\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895796723000534","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Machine learning and image analysis in vascular surgery
Deep learning, a subset of machine learning within artificial intelligence, has been successful in medical image analysis in vascular surgery. Unlike traditional computer-based segmentation methods that manually extract features from input images, deep learning methods learn image features and classify data without making prior assumptions. Convolutional neural networks, the main type of deep learning for computer vision processing, are neural networks with multilevel architecture and weighted connections between nodes that can “auto-learn” through repeated exposure to training data without manual input or supervision. These networks have numerous applications in vascular surgery imaging analysis, particularly in disease classification, object identification, semantic segmentation, and instance segmentation. The purpose of this review article was to review the relevant concepts of machine learning image analysis and its application to the field of vascular surgery.