{"title":"植物产生的锰过氧化物酶和商品漆酶降解合成染料的研究","authors":"Joshua D. Byrd, E. Hood","doi":"10.1177/23305517211060796","DOIUrl":null,"url":null,"abstract":"Contamination of the environment directly impacts animal, plant, and human health, as well as agricultural production. A potential solution tested in this work incorporates the use of enzymes from fungi, manganese (Mn) peroxidase (MnP) and laccase, to degrade pollutants. Unfortunately, the MnP is too expensive to produce (more than US$24,000 per gram) to be used in remediation applications. MnP from a corn kernel biofactory can be produced in large amounts, and at <US$5 per gram, would be cost-effective in this application and resolve pollution issues. Two formulations of recombinant MnP from the corn kernel production system and commercial fungal laccase have been tested for degradation of synthetic dyes in an aqueous environment. Numerous concentrations of four synthetic azo or anthraquinone dyes were used. All dyes were partially or completely degraded by both enzymes.","PeriodicalId":6955,"journal":{"name":"AATCC Journal of Research","volume":"9 1","pages":"49 - 59"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of Synthetic Dyes with Plant-Produced Manganese Peroxidase and Commercial Laccase\",\"authors\":\"Joshua D. Byrd, E. Hood\",\"doi\":\"10.1177/23305517211060796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contamination of the environment directly impacts animal, plant, and human health, as well as agricultural production. A potential solution tested in this work incorporates the use of enzymes from fungi, manganese (Mn) peroxidase (MnP) and laccase, to degrade pollutants. Unfortunately, the MnP is too expensive to produce (more than US$24,000 per gram) to be used in remediation applications. MnP from a corn kernel biofactory can be produced in large amounts, and at <US$5 per gram, would be cost-effective in this application and resolve pollution issues. Two formulations of recombinant MnP from the corn kernel production system and commercial fungal laccase have been tested for degradation of synthetic dyes in an aqueous environment. Numerous concentrations of four synthetic azo or anthraquinone dyes were used. All dyes were partially or completely degraded by both enzymes.\",\"PeriodicalId\":6955,\"journal\":{\"name\":\"AATCC Journal of Research\",\"volume\":\"9 1\",\"pages\":\"49 - 59\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AATCC Journal of Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/23305517211060796\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/23305517211060796","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Degradation of Synthetic Dyes with Plant-Produced Manganese Peroxidase and Commercial Laccase
Contamination of the environment directly impacts animal, plant, and human health, as well as agricultural production. A potential solution tested in this work incorporates the use of enzymes from fungi, manganese (Mn) peroxidase (MnP) and laccase, to degrade pollutants. Unfortunately, the MnP is too expensive to produce (more than US$24,000 per gram) to be used in remediation applications. MnP from a corn kernel biofactory can be produced in large amounts, and at
期刊介绍:
AATCC Journal of Research. This textile research journal has a broad scope: from advanced materials, fibers, and textile and polymer chemistry, to color science, apparel design, and sustainability.
Now indexed by Science Citation Index Extended (SCIE) and discoverable in the Clarivate Analytics Web of Science Core Collection! The Journal’s impact factor is available in Journal Citation Reports.