Dr. Avinash Vicholous Dass, Sreekar Wunnava, Juliette Langlais, Beatriz von der Esch, Maik Krusche, Lennard Ufer, Nico Chrisam, Romeo C. A. Dubini, Dr. Florian Gartner, Severin Angerpointner, Christina F. Dirscherl, Dr. Petra Rovó, Dr. Christof B. Mast, Dr. Judit E. Šponer, Prof. Dr. Christian Ochsenfeld, Prof. Dr. Erwin Frey, Prof. Dr. Dieter Braun
{"title":"不添加催化剂的2′,3′-环核苷酸在空气-水界面干燥的RNA低聚","authors":"Dr. Avinash Vicholous Dass, Sreekar Wunnava, Juliette Langlais, Beatriz von der Esch, Maik Krusche, Lennard Ufer, Nico Chrisam, Romeo C. A. Dubini, Dr. Florian Gartner, Severin Angerpointner, Christina F. Dirscherl, Dr. Petra Rovó, Dr. Christof B. Mast, Dr. Judit E. Šponer, Prof. Dr. Christian Ochsenfeld, Prof. Dr. Erwin Frey, Prof. Dr. Dieter Braun","doi":"10.1002/syst.202200026","DOIUrl":null,"url":null,"abstract":"<p>For the emergence of life, the abiotic synthesis of RNA from its monomers is a central step. We found that in alkaline, drying conditions in bulk and at heated air-water interfaces, 2′,3′-cyclic nucleotides oligomerised without additional catalyst, forming up to 10-mers within a day. The oligomerisation proceeded at a pH range of 7–12, at temperatures between 40–80 °C and was marginally enhanced by K<sup>+</sup> ions. Among the canonical ribonucleotides, cGMP oligomerised most efficiently. Quantification was performed using HPLC coupled to ESI-TOF by fitting the isotope distribution to the mass spectra. Our study suggests a oligomerisation mechanism where cGMP aids the incorporation of the relatively unreactive nucleotides C, A and U. The 2′,3′-cyclic ribonucleotides are byproducts of prebiotic phosphorylation, nucleotide syntheses and RNA hydrolysis, indicating direct recycling pathways. The simple reaction condition offers a plausible entry point for RNA to the evolution of life on early Earth.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200026","citationCount":"8","resultStr":"{\"title\":\"RNA Oligomerisation without Added Catalyst from 2′,3′-Cyclic Nucleotides by Drying at Air-Water Interfaces**\",\"authors\":\"Dr. Avinash Vicholous Dass, Sreekar Wunnava, Juliette Langlais, Beatriz von der Esch, Maik Krusche, Lennard Ufer, Nico Chrisam, Romeo C. A. Dubini, Dr. Florian Gartner, Severin Angerpointner, Christina F. Dirscherl, Dr. Petra Rovó, Dr. Christof B. Mast, Dr. Judit E. Šponer, Prof. Dr. Christian Ochsenfeld, Prof. Dr. Erwin Frey, Prof. Dr. Dieter Braun\",\"doi\":\"10.1002/syst.202200026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the emergence of life, the abiotic synthesis of RNA from its monomers is a central step. We found that in alkaline, drying conditions in bulk and at heated air-water interfaces, 2′,3′-cyclic nucleotides oligomerised without additional catalyst, forming up to 10-mers within a day. The oligomerisation proceeded at a pH range of 7–12, at temperatures between 40–80 °C and was marginally enhanced by K<sup>+</sup> ions. Among the canonical ribonucleotides, cGMP oligomerised most efficiently. Quantification was performed using HPLC coupled to ESI-TOF by fitting the isotope distribution to the mass spectra. Our study suggests a oligomerisation mechanism where cGMP aids the incorporation of the relatively unreactive nucleotides C, A and U. The 2′,3′-cyclic ribonucleotides are byproducts of prebiotic phosphorylation, nucleotide syntheses and RNA hydrolysis, indicating direct recycling pathways. The simple reaction condition offers a plausible entry point for RNA to the evolution of life on early Earth.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200026\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
RNA Oligomerisation without Added Catalyst from 2′,3′-Cyclic Nucleotides by Drying at Air-Water Interfaces**
For the emergence of life, the abiotic synthesis of RNA from its monomers is a central step. We found that in alkaline, drying conditions in bulk and at heated air-water interfaces, 2′,3′-cyclic nucleotides oligomerised without additional catalyst, forming up to 10-mers within a day. The oligomerisation proceeded at a pH range of 7–12, at temperatures between 40–80 °C and was marginally enhanced by K+ ions. Among the canonical ribonucleotides, cGMP oligomerised most efficiently. Quantification was performed using HPLC coupled to ESI-TOF by fitting the isotope distribution to the mass spectra. Our study suggests a oligomerisation mechanism where cGMP aids the incorporation of the relatively unreactive nucleotides C, A and U. The 2′,3′-cyclic ribonucleotides are byproducts of prebiotic phosphorylation, nucleotide syntheses and RNA hydrolysis, indicating direct recycling pathways. The simple reaction condition offers a plausible entry point for RNA to the evolution of life on early Earth.