Ruijuan Fan, Weixia Xie, Heqin Ma, Mengke Zhu, Kun Ma, Xingfu Yan
{"title":"抗镉微生物菌株的分离及其对土壤中镉的固定化作用","authors":"Ruijuan Fan, Weixia Xie, Heqin Ma, Mengke Zhu, Kun Ma, Xingfu Yan","doi":"10.1007/s10532-023-10026-5","DOIUrl":null,"url":null,"abstract":"<div><p>Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd<sup>2+</sup> in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as <i>Stenotrophomonas</i> sp., Cd-3 as <i>Achromobacter</i> sp., and Cd-7 as <i>Staphylococcus</i> sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd<sup>2+</sup>. The effects of the initial Cd<sup>2+</sup> concentration (1–100 mg/L), duration (18–72 h), temperature (10–40 °C), and pH (5.0–9.0) on the efficiency of Cd<sup>2+</sup> removal were analysed. The results revealed that the Cd<sup>2+</sup> removal rate was higher at an initial Cd<sup>2+</sup> concentration of 5–100 mg/L than at 1 mg/L. The maximum Cd<sup>2+</sup> removal effect was at a culture duration of 36 h, temperature of 10–35 °C, and pH of 5.0–7.0. X-ray diffraction (XRD) analysis revealed that the Cd<sup>2+</sup> was immobilised by <i>Stenotrophomonas</i> sp. Cd-2 and <i>Staphylococcus</i> sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd<sup>2+</sup> was adsorbed by <i>Stenotrophomonas</i> sp. Cd-2, <i>Achromobacter</i> sp. Cd-3, and <i>Staphylococcus</i> sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd<sup>2+</sup> mainly through the O–H, protein N–H, C–N, lipid C–H, fatty acid COO, polysaccharide C–O, P–O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd<sup>2+</sup> treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 5","pages":"445 - 459"},"PeriodicalIF":3.1000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil\",\"authors\":\"Ruijuan Fan, Weixia Xie, Heqin Ma, Mengke Zhu, Kun Ma, Xingfu Yan\",\"doi\":\"10.1007/s10532-023-10026-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd<sup>2+</sup> in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as <i>Stenotrophomonas</i> sp., Cd-3 as <i>Achromobacter</i> sp., and Cd-7 as <i>Staphylococcus</i> sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd<sup>2+</sup>. The effects of the initial Cd<sup>2+</sup> concentration (1–100 mg/L), duration (18–72 h), temperature (10–40 °C), and pH (5.0–9.0) on the efficiency of Cd<sup>2+</sup> removal were analysed. The results revealed that the Cd<sup>2+</sup> removal rate was higher at an initial Cd<sup>2+</sup> concentration of 5–100 mg/L than at 1 mg/L. The maximum Cd<sup>2+</sup> removal effect was at a culture duration of 36 h, temperature of 10–35 °C, and pH of 5.0–7.0. X-ray diffraction (XRD) analysis revealed that the Cd<sup>2+</sup> was immobilised by <i>Stenotrophomonas</i> sp. Cd-2 and <i>Staphylococcus</i> sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd<sup>2+</sup> was adsorbed by <i>Stenotrophomonas</i> sp. Cd-2, <i>Achromobacter</i> sp. Cd-3, and <i>Staphylococcus</i> sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd<sup>2+</sup> mainly through the O–H, protein N–H, C–N, lipid C–H, fatty acid COO, polysaccharide C–O, P–O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd<sup>2+</sup> treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"34 5\",\"pages\":\"445 - 459\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-023-10026-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10026-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil
Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd2+ in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as Stenotrophomonas sp., Cd-3 as Achromobacter sp., and Cd-7 as Staphylococcus sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd2+. The effects of the initial Cd2+ concentration (1–100 mg/L), duration (18–72 h), temperature (10–40 °C), and pH (5.0–9.0) on the efficiency of Cd2+ removal were analysed. The results revealed that the Cd2+ removal rate was higher at an initial Cd2+ concentration of 5–100 mg/L than at 1 mg/L. The maximum Cd2+ removal effect was at a culture duration of 36 h, temperature of 10–35 °C, and pH of 5.0–7.0. X-ray diffraction (XRD) analysis revealed that the Cd2+ was immobilised by Stenotrophomonas sp. Cd-2 and Staphylococcus sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd2+ was adsorbed by Stenotrophomonas sp. Cd-2, Achromobacter sp. Cd-3, and Staphylococcus sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd2+ mainly through the O–H, protein N–H, C–N, lipid C–H, fatty acid COO, polysaccharide C–O, P–O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd2+ treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.