GSNet:通过图形蒙皮网络生成3D服装动画

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2023-10-01 DOI:10.1016/j.gmod.2023.101197
Tao Peng , Jiewen Kuang , Jinxing Liang , Xinrong Hu , Jiazhe Miao , Ping Zhu , Lijun Li , Feng Yu , Minghua Jiang
{"title":"GSNet:通过图形蒙皮网络生成3D服装动画","authors":"Tao Peng ,&nbsp;Jiewen Kuang ,&nbsp;Jinxing Liang ,&nbsp;Xinrong Hu ,&nbsp;Jiazhe Miao ,&nbsp;Ping Zhu ,&nbsp;Lijun Li ,&nbsp;Feng Yu ,&nbsp;Minghua Jiang","doi":"10.1016/j.gmod.2023.101197","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of digital dress body animation is to produce the most realistic dress body animation possible. Although a method based on the same topology as the body can produce realistic results, it can only be applied to garments with the same topology as the body. Although the generalization-based approach can be extended to different types of garment templates, it still produces effects far from reality. We propose GSNet, a learning-based model that generates realistic garment animations and applies to garment types that do not match the body topology. We encode garment templates and body motions into latent space and use graph convolution to transfer body motion information to garment templates to drive garment motions. Our model considers temporal dependency and provides reliable physical constraints to make the generated animations more realistic. Qualitative and quantitative experiments show that our approach achieves state-of-the-art 3D garment animation performance.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101197"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GSNet: Generating 3D garment animation via graph skinning network\",\"authors\":\"Tao Peng ,&nbsp;Jiewen Kuang ,&nbsp;Jinxing Liang ,&nbsp;Xinrong Hu ,&nbsp;Jiazhe Miao ,&nbsp;Ping Zhu ,&nbsp;Lijun Li ,&nbsp;Feng Yu ,&nbsp;Minghua Jiang\",\"doi\":\"10.1016/j.gmod.2023.101197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of digital dress body animation is to produce the most realistic dress body animation possible. Although a method based on the same topology as the body can produce realistic results, it can only be applied to garments with the same topology as the body. Although the generalization-based approach can be extended to different types of garment templates, it still produces effects far from reality. We propose GSNet, a learning-based model that generates realistic garment animations and applies to garment types that do not match the body topology. We encode garment templates and body motions into latent space and use graph convolution to transfer body motion information to garment templates to drive garment motions. Our model considers temporal dependency and provides reliable physical constraints to make the generated animations more realistic. Qualitative and quantitative experiments show that our approach achieves state-of-the-art 3D garment animation performance.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"129 \",\"pages\":\"Article 101197\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000279\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000279","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

数字服装身体动画的目标是产生最逼真的服装身体动画。尽管基于与人体相同拓扑结构的方法可以产生逼真的结果,但它只能应用于与人体具有相同拓扑结构的服装。虽然基于泛化的方法可以扩展到不同类型的服装模板,但其效果与现实相差甚远。我们提出了GSNet,这是一个基于学习的模型,可以生成逼真的服装动画,并适用于与身体拓扑不匹配的服装类型。我们将服装模板和肢体动作编码到潜在空间中,利用图卷积将肢体动作信息传递到服装模板中,驱动服装运动。我们的模型考虑了时间依赖性,并提供了可靠的物理约束,使生成的动画更加逼真。定性和定量实验表明,我们的方法达到了最先进的3D服装动画性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GSNet: Generating 3D garment animation via graph skinning network

The goal of digital dress body animation is to produce the most realistic dress body animation possible. Although a method based on the same topology as the body can produce realistic results, it can only be applied to garments with the same topology as the body. Although the generalization-based approach can be extended to different types of garment templates, it still produces effects far from reality. We propose GSNet, a learning-based model that generates realistic garment animations and applies to garment types that do not match the body topology. We encode garment templates and body motions into latent space and use graph convolution to transfer body motion information to garment templates to drive garment motions. Our model considers temporal dependency and provides reliable physical constraints to make the generated animations more realistic. Qualitative and quantitative experiments show that our approach achieves state-of-the-art 3D garment animation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1