Tao Peng , Jiewen Kuang , Jinxing Liang , Xinrong Hu , Jiazhe Miao , Ping Zhu , Lijun Li , Feng Yu , Minghua Jiang
{"title":"GSNet:通过图形蒙皮网络生成3D服装动画","authors":"Tao Peng , Jiewen Kuang , Jinxing Liang , Xinrong Hu , Jiazhe Miao , Ping Zhu , Lijun Li , Feng Yu , Minghua Jiang","doi":"10.1016/j.gmod.2023.101197","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of digital dress body animation is to produce the most realistic dress body animation possible. Although a method based on the same topology as the body can produce realistic results, it can only be applied to garments with the same topology as the body. Although the generalization-based approach can be extended to different types of garment templates, it still produces effects far from reality. We propose GSNet, a learning-based model that generates realistic garment animations and applies to garment types that do not match the body topology. We encode garment templates and body motions into latent space and use graph convolution to transfer body motion information to garment templates to drive garment motions. Our model considers temporal dependency and provides reliable physical constraints to make the generated animations more realistic. Qualitative and quantitative experiments show that our approach achieves state-of-the-art 3D garment animation performance.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101197"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GSNet: Generating 3D garment animation via graph skinning network\",\"authors\":\"Tao Peng , Jiewen Kuang , Jinxing Liang , Xinrong Hu , Jiazhe Miao , Ping Zhu , Lijun Li , Feng Yu , Minghua Jiang\",\"doi\":\"10.1016/j.gmod.2023.101197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of digital dress body animation is to produce the most realistic dress body animation possible. Although a method based on the same topology as the body can produce realistic results, it can only be applied to garments with the same topology as the body. Although the generalization-based approach can be extended to different types of garment templates, it still produces effects far from reality. We propose GSNet, a learning-based model that generates realistic garment animations and applies to garment types that do not match the body topology. We encode garment templates and body motions into latent space and use graph convolution to transfer body motion information to garment templates to drive garment motions. Our model considers temporal dependency and provides reliable physical constraints to make the generated animations more realistic. Qualitative and quantitative experiments show that our approach achieves state-of-the-art 3D garment animation performance.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"129 \",\"pages\":\"Article 101197\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000279\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000279","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
GSNet: Generating 3D garment animation via graph skinning network
The goal of digital dress body animation is to produce the most realistic dress body animation possible. Although a method based on the same topology as the body can produce realistic results, it can only be applied to garments with the same topology as the body. Although the generalization-based approach can be extended to different types of garment templates, it still produces effects far from reality. We propose GSNet, a learning-based model that generates realistic garment animations and applies to garment types that do not match the body topology. We encode garment templates and body motions into latent space and use graph convolution to transfer body motion information to garment templates to drive garment motions. Our model considers temporal dependency and provides reliable physical constraints to make the generated animations more realistic. Qualitative and quantitative experiments show that our approach achieves state-of-the-art 3D garment animation performance.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.