焦耳加热和非均匀热源/热源对Darcy-Forchheimer多孔介质纵向拉伸表面非定常MHD混合对流的联合影响

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE Propulsion and Power Research Pub Date : 2022-06-01 DOI:10.1016/j.jppr.2022.06.001
B.K. Sharma, Rishu Gandhi
{"title":"焦耳加热和非均匀热源/热源对Darcy-Forchheimer多孔介质纵向拉伸表面非定常MHD混合对流的联合影响","authors":"B.K. Sharma,&nbsp;Rishu Gandhi","doi":"10.1016/j.jppr.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with an unsteady magnetohydrodynamics (MHD) heat and mass transfer for a viscous incompressible fluid through a vertical stretching surface embedded in a Darcy-Forchheimer porous medium in the presence of a non-uniform heat source/sink and first-order chemical reaction. The porous surface is subjected to a uniform transverse magnetic field. The influence of velocity, thermal, and concentration slip is also investigated. The governing equations are coupled non-linear partial differential equations, which have been converted via similarity transformation into a set of ordinary differential equations. The resultant system of non-linear ordinary differential equations has been solved numerically with the help of the “MATLAB” BVP4C Solver. Results are presented graphically to analyze the effects of various physical parameters discovered in the problem such as Hartmann number (<em>M</em>), Forchheimer number (<em>Fr</em>), Grashof number (<em>Gr</em>), solutal Grashof number (<em>Gc</em>), suction parameter (<em>S</em>), porosity parameter (<span><math><mrow><mover><mi>λ</mi><mo>˜</mo></mover></mrow></math></span>), dimensionless velocity slip (<span><math><mrow><msub><mi>S</mi><mi>v</mi></msub></mrow></math></span>), Prandtl number (<em>Pr</em>), dimensionless thermal slip (<span><math><mrow><msub><mi>S</mi><mi>t</mi></msub></mrow></math></span>), space-dependent heat source/sink parameter (<span><math><mrow><msubsup><mover><mi>A</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span>), temperature-dependent heat source/sink (<span><math><mrow><msubsup><mover><mi>B</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span>), Eckert number (<em>Ec</em>), Schmidt number (<em>Sc</em>), chemical reaction parameter (<span><math><mrow><mi>γ</mi></mrow></math></span>), unsteadiness parameter (<em>A</em>), and dimensionless concentration slip (<span><math><mrow><msub><mi>S</mi><mi>c</mi></msub></mrow></math></span>) on non-dimensional velocity <span><math><mrow><msup><mover><mi>χ</mi><mo>˜</mo></mover><mo>′</mo></msup><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, temperature <span><math><mrow><mi>ζ</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, and concentration <span><math><mover><mi>ϕ</mi><mo>˜</mo></mover><mfenced><mi>η</mi></mfenced></math></span> profiles. The influence of these parameters on skin-friction coefficient (<span><math><mrow><msubsup><mi>C</mi><mi>f</mi><mo>∗</mo></msubsup></mrow></math></span>), Nusselt number (<span><math><mrow><mi>N</mi><msubsup><mi>u</mi><mi>x</mi><mo>∗</mo></msubsup></mrow></math></span>), and Sherwood number (<span><math><mrow><mi>S</mi><msubsup><mi>h</mi><mi>x</mi><mo>∗</mo></msubsup></mrow></math></span>) are expressed in tabular form. It is observed that an enhancement in <em>Fr</em> and <span><math><mrow><mover><mi>λ</mi><mo>˜</mo></mover></mrow></math></span> results in the declination of the velocity profile. There is an enhancement in temperature with an increment in the <span><math><mrow><msubsup><mover><mi>A</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mover><mi>B</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span>. The physical representation of flow characteristics that appeared in the problem is presented using various graphs to depict real-world applications in industrial and engineering operations. The results were compared to previous studies, revealing that the two are in good agreement. The novelty of the present investigation is: To interpret the combined effects of viscous dissipation and Joule heating on a vertical stretching surface embedded in a highly porous medium modeled using the Darcy-Forchheimer model. The findings could be valuable in understanding the flow of oil, gas, and water through an oil or gas field reservoir, as well as groundwater migration and filtering and purification procedures.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"11 2","pages":"Pages 276-292"},"PeriodicalIF":5.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X22000438/pdfft?md5=021ffab08d44094ec3d39ba85918632e&pid=1-s2.0-S2212540X22000438-main.pdf","citationCount":"35","resultStr":"{\"title\":\"Combined effects of Joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded in a Darcy-Forchheimer porous medium\",\"authors\":\"B.K. Sharma,&nbsp;Rishu Gandhi\",\"doi\":\"10.1016/j.jppr.2022.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with an unsteady magnetohydrodynamics (MHD) heat and mass transfer for a viscous incompressible fluid through a vertical stretching surface embedded in a Darcy-Forchheimer porous medium in the presence of a non-uniform heat source/sink and first-order chemical reaction. The porous surface is subjected to a uniform transverse magnetic field. The influence of velocity, thermal, and concentration slip is also investigated. The governing equations are coupled non-linear partial differential equations, which have been converted via similarity transformation into a set of ordinary differential equations. The resultant system of non-linear ordinary differential equations has been solved numerically with the help of the “MATLAB” BVP4C Solver. Results are presented graphically to analyze the effects of various physical parameters discovered in the problem such as Hartmann number (<em>M</em>), Forchheimer number (<em>Fr</em>), Grashof number (<em>Gr</em>), solutal Grashof number (<em>Gc</em>), suction parameter (<em>S</em>), porosity parameter (<span><math><mrow><mover><mi>λ</mi><mo>˜</mo></mover></mrow></math></span>), dimensionless velocity slip (<span><math><mrow><msub><mi>S</mi><mi>v</mi></msub></mrow></math></span>), Prandtl number (<em>Pr</em>), dimensionless thermal slip (<span><math><mrow><msub><mi>S</mi><mi>t</mi></msub></mrow></math></span>), space-dependent heat source/sink parameter (<span><math><mrow><msubsup><mover><mi>A</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span>), temperature-dependent heat source/sink (<span><math><mrow><msubsup><mover><mi>B</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span>), Eckert number (<em>Ec</em>), Schmidt number (<em>Sc</em>), chemical reaction parameter (<span><math><mrow><mi>γ</mi></mrow></math></span>), unsteadiness parameter (<em>A</em>), and dimensionless concentration slip (<span><math><mrow><msub><mi>S</mi><mi>c</mi></msub></mrow></math></span>) on non-dimensional velocity <span><math><mrow><msup><mover><mi>χ</mi><mo>˜</mo></mover><mo>′</mo></msup><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, temperature <span><math><mrow><mi>ζ</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, and concentration <span><math><mover><mi>ϕ</mi><mo>˜</mo></mover><mfenced><mi>η</mi></mfenced></math></span> profiles. The influence of these parameters on skin-friction coefficient (<span><math><mrow><msubsup><mi>C</mi><mi>f</mi><mo>∗</mo></msubsup></mrow></math></span>), Nusselt number (<span><math><mrow><mi>N</mi><msubsup><mi>u</mi><mi>x</mi><mo>∗</mo></msubsup></mrow></math></span>), and Sherwood number (<span><math><mrow><mi>S</mi><msubsup><mi>h</mi><mi>x</mi><mo>∗</mo></msubsup></mrow></math></span>) are expressed in tabular form. It is observed that an enhancement in <em>Fr</em> and <span><math><mrow><mover><mi>λ</mi><mo>˜</mo></mover></mrow></math></span> results in the declination of the velocity profile. There is an enhancement in temperature with an increment in the <span><math><mrow><msubsup><mover><mi>A</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mover><mi>B</mi><mo>˜</mo></mover><mn>1</mn><mo>∗</mo></msubsup></mrow></math></span>. The physical representation of flow characteristics that appeared in the problem is presented using various graphs to depict real-world applications in industrial and engineering operations. The results were compared to previous studies, revealing that the two are in good agreement. The novelty of the present investigation is: To interpret the combined effects of viscous dissipation and Joule heating on a vertical stretching surface embedded in a highly porous medium modeled using the Darcy-Forchheimer model. The findings could be valuable in understanding the flow of oil, gas, and water through an oil or gas field reservoir, as well as groundwater migration and filtering and purification procedures.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"11 2\",\"pages\":\"Pages 276-292\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212540X22000438/pdfft?md5=021ffab08d44094ec3d39ba85918632e&pid=1-s2.0-S2212540X22000438-main.pdf\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X22000438\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X22000438","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 35

摘要

本文研究了粘性不可压缩流体在存在非均匀热源/热源和一级化学反应的情况下,通过达西-福希海默多孔介质中垂直拉伸表面的非定常磁流体动力学传热传质问题。多孔表面受到均匀横向磁场的作用。研究了速度滑移、热滑移和浓度滑移的影响。控制方程为耦合非线性偏微分方程,经相似变换转化为常微分方程。利用MATLAB的BVP4C求解器对所得到的非线性常微分方程组进行了数值求解。结果以图形形式给出,以分析问题中发现的各种物理参数的影响,如Hartmann数(M)、Forchheimer数(Fr)、Grashof数(Gr)、溶质Grashof数(Gc)、吸力参数(S)、孔隙度参数(λ≈)、无量纲速度滑移(Sv)、Prandtl数(Pr)、无量纲热滑移(St)、空间相关热源/热源参数(A≈1∗)、温度相关热源/热源(B≈1∗)、Eckert数(Ec)、Schmidt数(Sc)、化学反应参数(γ)、非定常参数(A)和无因次浓度滑移(Sc)对无因次速度χ ~′(η)、温度ζ(η)和浓度φ ~ η曲线的影响。这些参数对摩擦系数(Cf∗)、努塞尔数(Nux∗)和舍伍德数(Shx∗)的影响以表格形式表示。观察到,Fr和λ≈的增强导致速度剖面的衰减。温度随A ~ 1∗和B ~ 1∗的增加而增强。问题中出现的流动特性的物理表示使用各种图形来描述工业和工程操作中的实际应用。研究结果与之前的研究结果进行了比较,发现两者非常吻合。本研究的新颖之处在于:利用达西-福奇海默模型解释了嵌入高多孔介质的垂直拉伸表面上的粘性耗散和焦耳加热的联合效应。这些发现对于理解油气储层中油气和水的流动,以及地下水迁移和过滤净化过程具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined effects of Joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded in a Darcy-Forchheimer porous medium

This paper deals with an unsteady magnetohydrodynamics (MHD) heat and mass transfer for a viscous incompressible fluid through a vertical stretching surface embedded in a Darcy-Forchheimer porous medium in the presence of a non-uniform heat source/sink and first-order chemical reaction. The porous surface is subjected to a uniform transverse magnetic field. The influence of velocity, thermal, and concentration slip is also investigated. The governing equations are coupled non-linear partial differential equations, which have been converted via similarity transformation into a set of ordinary differential equations. The resultant system of non-linear ordinary differential equations has been solved numerically with the help of the “MATLAB” BVP4C Solver. Results are presented graphically to analyze the effects of various physical parameters discovered in the problem such as Hartmann number (M), Forchheimer number (Fr), Grashof number (Gr), solutal Grashof number (Gc), suction parameter (S), porosity parameter (λ˜), dimensionless velocity slip (Sv), Prandtl number (Pr), dimensionless thermal slip (St), space-dependent heat source/sink parameter (A˜1), temperature-dependent heat source/sink (B˜1), Eckert number (Ec), Schmidt number (Sc), chemical reaction parameter (γ), unsteadiness parameter (A), and dimensionless concentration slip (Sc) on non-dimensional velocity χ˜(η), temperature ζ(η), and concentration ϕ˜η profiles. The influence of these parameters on skin-friction coefficient (Cf), Nusselt number (Nux), and Sherwood number (Shx) are expressed in tabular form. It is observed that an enhancement in Fr and λ˜ results in the declination of the velocity profile. There is an enhancement in temperature with an increment in the A˜1 and B˜1. The physical representation of flow characteristics that appeared in the problem is presented using various graphs to depict real-world applications in industrial and engineering operations. The results were compared to previous studies, revealing that the two are in good agreement. The novelty of the present investigation is: To interpret the combined effects of viscous dissipation and Joule heating on a vertical stretching surface embedded in a highly porous medium modeled using the Darcy-Forchheimer model. The findings could be valuable in understanding the flow of oil, gas, and water through an oil or gas field reservoir, as well as groundwater migration and filtering and purification procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
期刊最新文献
Auto-updating model-based control for thrust variation mitigation and acceleration performance enhancement of gas turbine aero-engines Experimental study of corner separation and unsteady characteristics in linear compressor cascades with and without sweeping jet actuator Solitary, periodic, kink wave solutions of a perturbed high-order nonlinear Schrödinger equation via bifurcation theory Structural design of aeroengine radiators: State of the art and perspectives Entropy optimization on Casson nanofluid flow with radiation and Arrhenius activation energy over different geometries: A numerical and statistical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1