低梯度黑水河谷中硝酸盐污染地下水的快速反硝化

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2023-08-26 DOI:10.1007/s10533-023-01077-0
Scott Raulerson, Johnson B. Jeffers, Natalie A. Griffiths, Benjamin M. Rau, Cody Matteson, C. Rhett Jackson
{"title":"低梯度黑水河谷中硝酸盐污染地下水的快速反硝化","authors":"Scott Raulerson,&nbsp;Johnson B. Jeffers,&nbsp;Natalie A. Griffiths,&nbsp;Benjamin M. Rau,&nbsp;Cody Matteson,&nbsp;C. Rhett Jackson","doi":"10.1007/s10533-023-01077-0","DOIUrl":null,"url":null,"abstract":"<div><p>Leaching of excess nitrogen (N) to groundwater in fertilized landscapes can overwhelm natural biogeochemical processes and cause long-term eutrophication of aquatic systems. We investigated N fate and transport from an intensively managed short-rotation woody crop (<i>Pinus taeda</i>) plantation through the riparian zone of an intermittent, low-gradient blackwater stream. Fertilization of the <i>P. taeda</i> plantation on the uplands resulted in contamination of groundwater with nitrate concentrations between 0.9 and 1.9 mg N L<sup>−1</sup>. No corresponding increase in nitrate was observed in stream water or shallow groundwater in the riparian zone. Groundwater travel-time modeling predicted that N from near-stream, upland plantation areas should have reached streams during the monitoring period. Two years of measuring N species in well water in contrasting landscape positions (within the plantation, swale, riparian edge, forested hillslope, and valley), indicated rapid nitrate transformation and denitrification within the forested wetland valleys. Denitrification in the shallow groundwater system within the toeslopes and the riparian zone was estimated to have removed &gt; 90% of nitrate. These results highlight the importance of riparian zones as pathways for the removal of N and for controlling downstream N loads.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid denitrification of nitrate-contaminated groundwater in a low-gradient blackwater stream valley\",\"authors\":\"Scott Raulerson,&nbsp;Johnson B. Jeffers,&nbsp;Natalie A. Griffiths,&nbsp;Benjamin M. Rau,&nbsp;Cody Matteson,&nbsp;C. Rhett Jackson\",\"doi\":\"10.1007/s10533-023-01077-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Leaching of excess nitrogen (N) to groundwater in fertilized landscapes can overwhelm natural biogeochemical processes and cause long-term eutrophication of aquatic systems. We investigated N fate and transport from an intensively managed short-rotation woody crop (<i>Pinus taeda</i>) plantation through the riparian zone of an intermittent, low-gradient blackwater stream. Fertilization of the <i>P. taeda</i> plantation on the uplands resulted in contamination of groundwater with nitrate concentrations between 0.9 and 1.9 mg N L<sup>−1</sup>. No corresponding increase in nitrate was observed in stream water or shallow groundwater in the riparian zone. Groundwater travel-time modeling predicted that N from near-stream, upland plantation areas should have reached streams during the monitoring period. Two years of measuring N species in well water in contrasting landscape positions (within the plantation, swale, riparian edge, forested hillslope, and valley), indicated rapid nitrate transformation and denitrification within the forested wetland valleys. Denitrification in the shallow groundwater system within the toeslopes and the riparian zone was estimated to have removed &gt; 90% of nitrate. These results highlight the importance of riparian zones as pathways for the removal of N and for controlling downstream N loads.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-023-01077-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-023-01077-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在肥沃的景观中,过量的氮(N)浸出到地下水中会压倒自然的生物地球化学过程,并导致水生系统的长期富营养化。研究了集约化管理的短轮作木本作物松林(Pinus taeda)通过间歇低梯度黑水河流带的氮的命运和运输。高原柽柳人工林施肥导致地下水硝酸盐浓度在0.9 ~ 1.9 mg N L−1之间。河岸带的溪水和浅层地下水中硝酸盐含量未见相应的增加。地下水走时模型预测,在监测期间,来自近溪流、旱地种植区的氮应该已经到达溪流。对不同景观位置(人工林、沼泽、河岸边缘、森林山坡和山谷)井水中氮的测定表明,森林湿地山谷中硝酸盐的快速转化和反硝化作用。据估计,坡道和河岸地带浅层地下水系统的反硝化作用已经去除了90%的硝酸盐。这些结果强调了河岸带作为去除氮和控制下游氮负荷的途径的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid denitrification of nitrate-contaminated groundwater in a low-gradient blackwater stream valley

Leaching of excess nitrogen (N) to groundwater in fertilized landscapes can overwhelm natural biogeochemical processes and cause long-term eutrophication of aquatic systems. We investigated N fate and transport from an intensively managed short-rotation woody crop (Pinus taeda) plantation through the riparian zone of an intermittent, low-gradient blackwater stream. Fertilization of the P. taeda plantation on the uplands resulted in contamination of groundwater with nitrate concentrations between 0.9 and 1.9 mg N L−1. No corresponding increase in nitrate was observed in stream water or shallow groundwater in the riparian zone. Groundwater travel-time modeling predicted that N from near-stream, upland plantation areas should have reached streams during the monitoring period. Two years of measuring N species in well water in contrasting landscape positions (within the plantation, swale, riparian edge, forested hillslope, and valley), indicated rapid nitrate transformation and denitrification within the forested wetland valleys. Denitrification in the shallow groundwater system within the toeslopes and the riparian zone was estimated to have removed > 90% of nitrate. These results highlight the importance of riparian zones as pathways for the removal of N and for controlling downstream N loads.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
Regional differences in soil stable isotopes and vibrational features at depth in three California grasslands High spatial variability in wetland methane fluxes is tied to vegetation patch types Calcium sorption and isotope fractionation in Bacillus subtilis and Pseudomonas aeruginosa Forest types control the contribution of litter and roots to labile and persistent soil organic carbon Response of Fe(III)-reducing kinetics, microbial community structure and Fe(III)-related functional genes to Fe(III)-organic matter complexes and ferrihydrite in lake sediment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1