{"title":"超音速偏置射流的气动声学特性","authors":"Harinath Reddy Nakkala, Krishnamurthy Srinivasan","doi":"10.1177/1475472X221150170","DOIUrl":null,"url":null,"abstract":"The offset jet configuration is one where the jet is discharged at some distance from a solid surface. Although the geometric configuration may look simple, the flow may involve several complexities. In propulsion systems, the high-speed jet generated from the rear engine of an aircraft, flowing nearby the fuselage, can be treated as an offset jet. In this work, an experimental investigation of the interaction noise due to circular high-speed offset jets is performed in an anechoic environment at different nozzle pressure ratios and offset ratios (height of the jet centerline above the plate per nozzle width). A large horizontal plate placed over a height-adjustable stand is used as the offset plate. Acoustic characteristics such as overall sound pressure level and the directivity pattern of free and offset jets are compared for different nozzle pressure ratios. The effect of offset ratio on noise characteristics is also investigated. Flow visualization is also carried out to understand the shock structure and its noise generation mechanism. Acoustic characteristics reveal that noise levels are higher for an offset jet compared to a free jet. Sound pressure levels for offset ratio 0.5 are lower than those for other offset ratios. The noise levels are higher for offset ratio 1.0 due to the presence of feedback tone. Schlieren visualization studies also corroborate the above characteristics.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"22 1","pages":"5 - 22"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeroacoustic characteristics of supersonic offset jets\",\"authors\":\"Harinath Reddy Nakkala, Krishnamurthy Srinivasan\",\"doi\":\"10.1177/1475472X221150170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The offset jet configuration is one where the jet is discharged at some distance from a solid surface. Although the geometric configuration may look simple, the flow may involve several complexities. In propulsion systems, the high-speed jet generated from the rear engine of an aircraft, flowing nearby the fuselage, can be treated as an offset jet. In this work, an experimental investigation of the interaction noise due to circular high-speed offset jets is performed in an anechoic environment at different nozzle pressure ratios and offset ratios (height of the jet centerline above the plate per nozzle width). A large horizontal plate placed over a height-adjustable stand is used as the offset plate. Acoustic characteristics such as overall sound pressure level and the directivity pattern of free and offset jets are compared for different nozzle pressure ratios. The effect of offset ratio on noise characteristics is also investigated. Flow visualization is also carried out to understand the shock structure and its noise generation mechanism. Acoustic characteristics reveal that noise levels are higher for an offset jet compared to a free jet. Sound pressure levels for offset ratio 0.5 are lower than those for other offset ratios. The noise levels are higher for offset ratio 1.0 due to the presence of feedback tone. Schlieren visualization studies also corroborate the above characteristics.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"22 1\",\"pages\":\"5 - 22\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X221150170\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221150170","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Aeroacoustic characteristics of supersonic offset jets
The offset jet configuration is one where the jet is discharged at some distance from a solid surface. Although the geometric configuration may look simple, the flow may involve several complexities. In propulsion systems, the high-speed jet generated from the rear engine of an aircraft, flowing nearby the fuselage, can be treated as an offset jet. In this work, an experimental investigation of the interaction noise due to circular high-speed offset jets is performed in an anechoic environment at different nozzle pressure ratios and offset ratios (height of the jet centerline above the plate per nozzle width). A large horizontal plate placed over a height-adjustable stand is used as the offset plate. Acoustic characteristics such as overall sound pressure level and the directivity pattern of free and offset jets are compared for different nozzle pressure ratios. The effect of offset ratio on noise characteristics is also investigated. Flow visualization is also carried out to understand the shock structure and its noise generation mechanism. Acoustic characteristics reveal that noise levels are higher for an offset jet compared to a free jet. Sound pressure levels for offset ratio 0.5 are lower than those for other offset ratios. The noise levels are higher for offset ratio 1.0 due to the presence of feedback tone. Schlieren visualization studies also corroborate the above characteristics.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.