{"title":"截尾和时间序列数据的相对误差回归函数估计量的渐近正态性","authors":"Feriel Bouhadjera, E. O. Saïd","doi":"10.1515/demo-2021-0107","DOIUrl":null,"url":null,"abstract":"Abstract Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dependency. The asymptotic variance is explicitly given. Some simulations are drawn to lend further support to our theoretical result and illustrate the good accuracy of the studied method. Furthermore, a real data example is treated to show the good quality of the prediction and that the true data are well inside in the confidence intervals.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"156 - 178"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic normality of the relative error regression function estimator for censored and time series data\",\"authors\":\"Feriel Bouhadjera, E. O. Saïd\",\"doi\":\"10.1515/demo-2021-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dependency. The asymptotic variance is explicitly given. Some simulations are drawn to lend further support to our theoretical result and illustrate the good accuracy of the studied method. Furthermore, a real data example is treated to show the good quality of the prediction and that the true data are well inside in the confidence intervals.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"9 1\",\"pages\":\"156 - 178\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2021-0107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2021-0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic normality of the relative error regression function estimator for censored and time series data
Abstract Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dependency. The asymptotic variance is explicitly given. Some simulations are drawn to lend further support to our theoretical result and illustrate the good accuracy of the studied method. Furthermore, a real data example is treated to show the good quality of the prediction and that the true data are well inside in the confidence intervals.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations