{"title":"改进犁-深-肥设计,提高土壤肥力","authors":"Nikolay Romanyuk , Valery Ednach , Sayakhat Nukeshev , Irina Troyanovskaya , Sergey Voinash , Marat Kalimullin , Viktoriia Sokolova","doi":"10.1016/j.jterra.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of intensive technologies for the cultivation of agricultural crops provides for the application of fertilizers in the process of tillage. This reduces the compaction of the soil, increases its fertility and the quality of the crop. The purpose of these studies is to develop a universal working tool that allows you to combine several technological operations in one pass of the unit. The authors have developed an original design of a plow-subsoiler-fertilizer. This combined working body includes a reversible plow and a vibratory subsoiler with fertilizer ducts. This solution allows you to combine the application of fertilizers when plowing the field, loosening the subsoil layer and mixing the soil. As a result of the work, the dependences of the geometric dimensions of the structure on the traction resistance to movement in the soil were obtained. To implement the developed idea into a real design, the main parameters of the plow-subsoiler-fertilizer are determined. Particular attention is paid to the calculation of the spring mechanism that ensures the vibration of the subsoiler. The optimal number and location of belleville springs in the block and shock absorber were selected, at which the subsoiler will perform self-oscillations with a given amplitude.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"106 ","pages":"Pages 89-93"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improvement of the design of the plow-subsoiler-fertilizer to increase soil fertility\",\"authors\":\"Nikolay Romanyuk , Valery Ednach , Sayakhat Nukeshev , Irina Troyanovskaya , Sergey Voinash , Marat Kalimullin , Viktoriia Sokolova\",\"doi\":\"10.1016/j.jterra.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of intensive technologies for the cultivation of agricultural crops provides for the application of fertilizers in the process of tillage. This reduces the compaction of the soil, increases its fertility and the quality of the crop. The purpose of these studies is to develop a universal working tool that allows you to combine several technological operations in one pass of the unit. The authors have developed an original design of a plow-subsoiler-fertilizer. This combined working body includes a reversible plow and a vibratory subsoiler with fertilizer ducts. This solution allows you to combine the application of fertilizers when plowing the field, loosening the subsoil layer and mixing the soil. As a result of the work, the dependences of the geometric dimensions of the structure on the traction resistance to movement in the soil were obtained. To implement the developed idea into a real design, the main parameters of the plow-subsoiler-fertilizer are determined. Particular attention is paid to the calculation of the spring mechanism that ensures the vibration of the subsoiler. The optimal number and location of belleville springs in the block and shock absorber were selected, at which the subsoiler will perform self-oscillations with a given amplitude.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"106 \",\"pages\":\"Pages 89-93\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489823000010\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000010","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Improvement of the design of the plow-subsoiler-fertilizer to increase soil fertility
The use of intensive technologies for the cultivation of agricultural crops provides for the application of fertilizers in the process of tillage. This reduces the compaction of the soil, increases its fertility and the quality of the crop. The purpose of these studies is to develop a universal working tool that allows you to combine several technological operations in one pass of the unit. The authors have developed an original design of a plow-subsoiler-fertilizer. This combined working body includes a reversible plow and a vibratory subsoiler with fertilizer ducts. This solution allows you to combine the application of fertilizers when plowing the field, loosening the subsoil layer and mixing the soil. As a result of the work, the dependences of the geometric dimensions of the structure on the traction resistance to movement in the soil were obtained. To implement the developed idea into a real design, the main parameters of the plow-subsoiler-fertilizer are determined. Particular attention is paid to the calculation of the spring mechanism that ensures the vibration of the subsoiler. The optimal number and location of belleville springs in the block and shock absorber were selected, at which the subsoiler will perform self-oscillations with a given amplitude.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.