半双工无线通信的分布式QC-LDPC编码空间调制

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Radioengineering Pub Date : 2022-09-01 DOI:10.13164/re.2022.0362
C. Zhao, F. Yang, D. K. Waweru, C. Chen, H. Xu
{"title":"半双工无线通信的分布式QC-LDPC编码空间调制","authors":"C. Zhao, F. Yang, D. K. Waweru, C. Chen, H. Xu","doi":"10.13164/re.2022.0362","DOIUrl":null,"url":null,"abstract":". The bit error rate (BER) performance of spatial modulation (SM) can be further improved by applying quasi-cyclic low-density parity-check (QC-LDPC) codes recommended in 5G to SM. It motivates us to propose a QC-LDPC coded SM (QC-LDPCC-SM) scheme, where SM signals are protected by QC-LDPC codes. To estimate the channel state information at the receiver, a novel iterative joint channel estimation and data detection based on variable block length (IJCEDD-VBL) for SM is presented. In standard 5G LDPC codes, the parity-check matrix contains multiple submatrices, and then we can construct two different QC-LDPC codes by suitably selecting the submatrices. Thus, the QC-LDPCC-SM scheme can be effectively ex-tended to cooperative scenarios when deploying the generated LDPC codes at the source and relay, respectively. We develop an analytical approach for the BER performance of the proposed schemes. The simulation and theoretical results are in good agreement at high signal-to-noise ratio (SNR). Furthermore, the proposed coded cooperative scheme outperforms its corresponding non-cooperative counterpart and the existing scheme. The numerical results also validate the effectiveness of the proposed channel estimation scheme.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed QC-LDPC Coded Spatial Modulation for Half-Duplex Wireless Communications\",\"authors\":\"C. Zhao, F. Yang, D. K. Waweru, C. Chen, H. Xu\",\"doi\":\"10.13164/re.2022.0362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The bit error rate (BER) performance of spatial modulation (SM) can be further improved by applying quasi-cyclic low-density parity-check (QC-LDPC) codes recommended in 5G to SM. It motivates us to propose a QC-LDPC coded SM (QC-LDPCC-SM) scheme, where SM signals are protected by QC-LDPC codes. To estimate the channel state information at the receiver, a novel iterative joint channel estimation and data detection based on variable block length (IJCEDD-VBL) for SM is presented. In standard 5G LDPC codes, the parity-check matrix contains multiple submatrices, and then we can construct two different QC-LDPC codes by suitably selecting the submatrices. Thus, the QC-LDPCC-SM scheme can be effectively ex-tended to cooperative scenarios when deploying the generated LDPC codes at the source and relay, respectively. We develop an analytical approach for the BER performance of the proposed schemes. The simulation and theoretical results are in good agreement at high signal-to-noise ratio (SNR). Furthermore, the proposed coded cooperative scheme outperforms its corresponding non-cooperative counterpart and the existing scheme. The numerical results also validate the effectiveness of the proposed channel estimation scheme.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0362\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0362","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

通过将5G中推荐的准循环低密度奇偶校验(QC-LDPC)码应用于空间调制(SM),可以进一步提高空间调制的误码率(BER)性能。为了估计接收机处的信道状态信息,提出了一种新的基于可变块长度(IJCEDD-VBL)的SM迭代联合信道估计和数据检测方法。在标准5G LDPC码中,奇偶校验矩阵包含多个子矩阵,然后我们可以通过适当地选择子矩阵来构造两个不同的QC-LDPC码。因此,当分别在源端和中继端部署生成的LDPC码时,QC-LDPCC-SM方案可以有效地扩展到协作场景。我们为所提出的方案的误码率性能开发了一种分析方法。在高信噪比条件下,仿真结果与理论结果吻合良好。此外,所提出的编码协作方案优于相应的非协作方案和现有方案。数值结果也验证了所提出的信道估计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed QC-LDPC Coded Spatial Modulation for Half-Duplex Wireless Communications
. The bit error rate (BER) performance of spatial modulation (SM) can be further improved by applying quasi-cyclic low-density parity-check (QC-LDPC) codes recommended in 5G to SM. It motivates us to propose a QC-LDPC coded SM (QC-LDPCC-SM) scheme, where SM signals are protected by QC-LDPC codes. To estimate the channel state information at the receiver, a novel iterative joint channel estimation and data detection based on variable block length (IJCEDD-VBL) for SM is presented. In standard 5G LDPC codes, the parity-check matrix contains multiple submatrices, and then we can construct two different QC-LDPC codes by suitably selecting the submatrices. Thus, the QC-LDPCC-SM scheme can be effectively ex-tended to cooperative scenarios when deploying the generated LDPC codes at the source and relay, respectively. We develop an analytical approach for the BER performance of the proposed schemes. The simulation and theoretical results are in good agreement at high signal-to-noise ratio (SNR). Furthermore, the proposed coded cooperative scheme outperforms its corresponding non-cooperative counterpart and the existing scheme. The numerical results also validate the effectiveness of the proposed channel estimation scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
期刊最新文献
Test Evaluation Method for Second-order Intermodulation False Alarm Interference Performance of the User in the TDD NOMA Cellular Networks Enabling FFR An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions Reconstruction of Mixed Boundary Objects and Classification Using Deep Learning and Linear Sampling Method Coverless Steganography Based on Low Similarity Feature Selection in DCT Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1