{"title":"综述:石墨相氮化碳光fenton催化剂及其对有机废水的光催化降解性能","authors":"Jingpeng Luo, Xu Du, Qingying Ye, Dong Fu","doi":"10.1007/s10563-022-09363-x","DOIUrl":null,"url":null,"abstract":"<div><p>The catalytic properties and applications of Fenton and Fenton-like catalysts based on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) are reviewed. Compared with semiconductor photocatalytic, the synergistic system of photocatalysis and Fenton-like oxidation has a stronger ability to degrade organic wastewater, but there are still some shortcomings, such as high recombination rate of photogenerated carriers and serious agglomeration of metals on the catalyst surface, and its catalytic performance still needs to be further improved. The development of heterogeneous photo-Fenton-like catalysts based on g-C<sub>3</sub>N<sub>4</sub> and their Fenton-like mechanism will be the focus of future research.</p>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 4","pages":"294 - 310"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Review: Graphite Phase Carbon Nitride Photo-Fenton Catalyst and its Photocatalytic Degradation Performance for Organic Wastewater\",\"authors\":\"Jingpeng Luo, Xu Du, Qingying Ye, Dong Fu\",\"doi\":\"10.1007/s10563-022-09363-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The catalytic properties and applications of Fenton and Fenton-like catalysts based on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) are reviewed. Compared with semiconductor photocatalytic, the synergistic system of photocatalysis and Fenton-like oxidation has a stronger ability to degrade organic wastewater, but there are still some shortcomings, such as high recombination rate of photogenerated carriers and serious agglomeration of metals on the catalyst surface, and its catalytic performance still needs to be further improved. The development of heterogeneous photo-Fenton-like catalysts based on g-C<sub>3</sub>N<sub>4</sub> and their Fenton-like mechanism will be the focus of future research.</p>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"26 4\",\"pages\":\"294 - 310\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-022-09363-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09363-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Review: Graphite Phase Carbon Nitride Photo-Fenton Catalyst and its Photocatalytic Degradation Performance for Organic Wastewater
The catalytic properties and applications of Fenton and Fenton-like catalysts based on graphitic carbon nitride (g-C3N4) are reviewed. Compared with semiconductor photocatalytic, the synergistic system of photocatalysis and Fenton-like oxidation has a stronger ability to degrade organic wastewater, but there are still some shortcomings, such as high recombination rate of photogenerated carriers and serious agglomeration of metals on the catalyst surface, and its catalytic performance still needs to be further improved. The development of heterogeneous photo-Fenton-like catalysts based on g-C3N4 and their Fenton-like mechanism will be the focus of future research.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.