T. Satitchantrakul, A. Boonpoonga, D. Torrungrueng
{"title":"基于共轭特性阻抗传输线的广义复阻抗变换器","authors":"T. Satitchantrakul, A. Boonpoonga, D. Torrungrueng","doi":"10.1155/2023/2311010","DOIUrl":null,"url":null,"abstract":"The novel technique of generalizing complex-to-complex impedance transformers (CCITs) with miniaturization is introduced in this paper. The generalized CCITs are designed based on conjugately characteristic-impedance transmission lines (CCITLs) along with the Meta-Smith charts (MSCs), resulting in convenient design equations. For illustration, a prototype of generalized CCITs is designed, simulated, and implemented with an asymmetric compact microstrip resonant cell (ACMRC), which is one of the CCITLs. The measurement results confirm that the proposed technique offers approximately 28.5% shorter in physical length compared to the CCIT designed using standard transmission lines.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Complex-to-Complex Impedance Transformers Based on Conjugately Characteristic-Impedance Transmission Lines\",\"authors\":\"T. Satitchantrakul, A. Boonpoonga, D. Torrungrueng\",\"doi\":\"10.1155/2023/2311010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel technique of generalizing complex-to-complex impedance transformers (CCITs) with miniaturization is introduced in this paper. The generalized CCITs are designed based on conjugately characteristic-impedance transmission lines (CCITLs) along with the Meta-Smith charts (MSCs), resulting in convenient design equations. For illustration, a prototype of generalized CCITs is designed, simulated, and implemented with an asymmetric compact microstrip resonant cell (ACMRC), which is one of the CCITLs. The measurement results confirm that the proposed technique offers approximately 28.5% shorter in physical length compared to the CCIT designed using standard transmission lines.\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2311010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/2311010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Generalized Complex-to-Complex Impedance Transformers Based on Conjugately Characteristic-Impedance Transmission Lines
The novel technique of generalizing complex-to-complex impedance transformers (CCITs) with miniaturization is introduced in this paper. The generalized CCITs are designed based on conjugately characteristic-impedance transmission lines (CCITLs) along with the Meta-Smith charts (MSCs), resulting in convenient design equations. For illustration, a prototype of generalized CCITs is designed, simulated, and implemented with an asymmetric compact microstrip resonant cell (ACMRC), which is one of the CCITLs. The measurement results confirm that the proposed technique offers approximately 28.5% shorter in physical length compared to the CCIT designed using standard transmission lines.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.