从机器学习模型快速近似STEM图像模拟

Aidan H. Combs, Jason J. Maldonis, Jie Feng, Zhongnan Xu, Paul M. Voyles, Dane Morgan
{"title":"从机器学习模型快速近似STEM图像模拟","authors":"Aidan H. Combs,&nbsp;Jason J. Maldonis,&nbsp;Jie Feng,&nbsp;Zhongnan Xu,&nbsp;Paul M. Voyles,&nbsp;Dane Morgan","doi":"10.1186/s40679-019-0064-2","DOIUrl":null,"url":null,"abstract":"<p>Accurate quantum mechanical scanning transmission electron microscopy image simulation methods such as the multislice method require computation times that are too large to use in applications in high-resolution materials imaging that require very large numbers of simulated images. However, higher-speed simulation methods based on linear imaging models, such as the convolution method, are often not accurate enough for use in these applications. We present a method that generates an image from the convolution of an object function and the probe intensity, and then uses a multivariate polynomial fit to a dataset of corresponding multislice and convolution images to correct it. We develop and validate this method using simulated images of Pt and Pt–Mo nanoparticles and find that for these systems, once the polynomial is fit, the method runs about six orders of magnitude faster than parallelized CPU implementations of the multislice method while achieving a 1???<i>R</i><sup>2</sup> error of 0.010–0.015 and root-mean-square error/standard deviation of dataset being predicted of about 0.1 when compared to full multislice simulations.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"5 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-019-0064-2","citationCount":"5","resultStr":"{\"title\":\"Fast approximate STEM image simulations from a machine learning model\",\"authors\":\"Aidan H. Combs,&nbsp;Jason J. Maldonis,&nbsp;Jie Feng,&nbsp;Zhongnan Xu,&nbsp;Paul M. Voyles,&nbsp;Dane Morgan\",\"doi\":\"10.1186/s40679-019-0064-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate quantum mechanical scanning transmission electron microscopy image simulation methods such as the multislice method require computation times that are too large to use in applications in high-resolution materials imaging that require very large numbers of simulated images. However, higher-speed simulation methods based on linear imaging models, such as the convolution method, are often not accurate enough for use in these applications. We present a method that generates an image from the convolution of an object function and the probe intensity, and then uses a multivariate polynomial fit to a dataset of corresponding multislice and convolution images to correct it. We develop and validate this method using simulated images of Pt and Pt–Mo nanoparticles and find that for these systems, once the polynomial is fit, the method runs about six orders of magnitude faster than parallelized CPU implementations of the multislice method while achieving a 1???<i>R</i><sup>2</sup> error of 0.010–0.015 and root-mean-square error/standard deviation of dataset being predicted of about 0.1 when compared to full multislice simulations.</p>\",\"PeriodicalId\":460,\"journal\":{\"name\":\"Advanced Structural and Chemical Imaging\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5600,\"publicationDate\":\"2019-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40679-019-0064-2\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Structural and Chemical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40679-019-0064-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-019-0064-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5

摘要

精确的量子力学扫描透射电子显微镜图像模拟方法,如多片方法,需要的计算时间太大,无法用于需要大量模拟图像的高分辨率材料成像应用。然而,基于线性成像模型的高速仿真方法,如卷积方法,在这些应用中往往不够精确。我们提出了一种从目标函数和探针强度的卷积生成图像的方法,然后使用多元多项式拟合相应的多片和卷积图像的数据集来校正它。我们使用Pt和Pt - mo纳米颗粒的模拟图像开发并验证了该方法,发现对于这些系统,一旦多项式拟合,该方法的运行速度比并行化CPU实现的多片方法快6个数量级,同时实现了1??与全多层模拟相比,预测数据集的R2误差为0.010-0.015,均方根误差/标准差约为0.1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast approximate STEM image simulations from a machine learning model

Accurate quantum mechanical scanning transmission electron microscopy image simulation methods such as the multislice method require computation times that are too large to use in applications in high-resolution materials imaging that require very large numbers of simulated images. However, higher-speed simulation methods based on linear imaging models, such as the convolution method, are often not accurate enough for use in these applications. We present a method that generates an image from the convolution of an object function and the probe intensity, and then uses a multivariate polynomial fit to a dataset of corresponding multislice and convolution images to correct it. We develop and validate this method using simulated images of Pt and Pt–Mo nanoparticles and find that for these systems, once the polynomial is fit, the method runs about six orders of magnitude faster than parallelized CPU implementations of the multislice method while achieving a 1???R2 error of 0.010–0.015 and root-mean-square error/standard deviation of dataset being predicted of about 0.1 when compared to full multislice simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
期刊最新文献
Detection of defects in atomic-resolution images of materials using cycle analysis Imaging of polymer:fullerene bulk-heterojunctions in a scanning electron microscope: methodology aspects and nanomorphology by correlative SEM and STEM mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks Investigation of hole-free phase plate performance in transmission electron microscopy under different operation conditions by experiments and simulations Optimal principal component analysis of STEM XEDS spectrum images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1