影响纳米流体行为的因素:综述

M. Alktranee, P. Bencs
{"title":"影响纳米流体行为的因素:综述","authors":"M. Alktranee, P. Bencs","doi":"10.1556/1848.2022.00531","DOIUrl":null,"url":null,"abstract":"Nanotechnology applications have occupied a wide range in engineering applications and achieved distinctive performance due to their potential as a working fluid instead of conventional liquids due to their outstanding performance. Sustaining stable performance nanofluids for a longer time retaining their properties without clustering and nanoparticles aggregation in the base fluid represents a significant challenge that can influence nanofluid properties and thermal behaviour. This review highlights some important factors that influence the stability of nanofluids, such as the size, concentration ratio of nanoparticles, and the type of base fluid, in addition discussing the methods used to improve the stability of nanofluids, such as the effect of cluster formation of nanoparticles in the base fluid due to Brownian motion and the role of the surfactants in preventing or reducing the agglomeration of nanoparticles, zeta potential and pH in estimating nanofluids stability. The factors mentioned affect the thermophysical properties of nanoparticles in preparing nanofluids and enhance their performance. This review provides information which helps improve the wide range usability of nanofluids for preparing stable nanofluids with good thermophysical properties.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors affecting nanofluids behaviour: A review\",\"authors\":\"M. Alktranee, P. Bencs\",\"doi\":\"10.1556/1848.2022.00531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology applications have occupied a wide range in engineering applications and achieved distinctive performance due to their potential as a working fluid instead of conventional liquids due to their outstanding performance. Sustaining stable performance nanofluids for a longer time retaining their properties without clustering and nanoparticles aggregation in the base fluid represents a significant challenge that can influence nanofluid properties and thermal behaviour. This review highlights some important factors that influence the stability of nanofluids, such as the size, concentration ratio of nanoparticles, and the type of base fluid, in addition discussing the methods used to improve the stability of nanofluids, such as the effect of cluster formation of nanoparticles in the base fluid due to Brownian motion and the role of the surfactants in preventing or reducing the agglomeration of nanoparticles, zeta potential and pH in estimating nanofluids stability. The factors mentioned affect the thermophysical properties of nanoparticles in preparing nanofluids and enhance their performance. This review provides information which helps improve the wide range usability of nanofluids for preparing stable nanofluids with good thermophysical properties.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2022.00531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2022.00531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术的应用已经在工程应用中占据了广泛的范围,并且由于其优异的性能而具有替代传统液体的工作流体的潜力,从而取得了独特的性能。在更长时间内保持纳米流体的稳定性能,在基液中不聚集和纳米颗粒聚集的情况下保持其特性是一项重大挑战,可能会影响纳米流体的特性和热行为。本文重点介绍了影响纳米流体稳定性的一些重要因素,如纳米颗粒的大小、浓度比和基液类型,并讨论了提高纳米流体稳定性的方法,如布朗运动对纳米颗粒在基液中形成簇的影响以及表面活性剂在防止或减少纳米颗粒团聚中的作用。zeta电位和pH值在纳米流体稳定性评估中的应用。这些因素影响了纳米流体制备过程中纳米颗粒的热物理性质,提高了纳米流体的性能。这一综述有助于提高纳米流体的广泛可用性,以制备具有良好热物理性质的稳定纳米流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factors affecting nanofluids behaviour: A review
Nanotechnology applications have occupied a wide range in engineering applications and achieved distinctive performance due to their potential as a working fluid instead of conventional liquids due to their outstanding performance. Sustaining stable performance nanofluids for a longer time retaining their properties without clustering and nanoparticles aggregation in the base fluid represents a significant challenge that can influence nanofluid properties and thermal behaviour. This review highlights some important factors that influence the stability of nanofluids, such as the size, concentration ratio of nanoparticles, and the type of base fluid, in addition discussing the methods used to improve the stability of nanofluids, such as the effect of cluster formation of nanoparticles in the base fluid due to Brownian motion and the role of the surfactants in preventing or reducing the agglomeration of nanoparticles, zeta potential and pH in estimating nanofluids stability. The factors mentioned affect the thermophysical properties of nanoparticles in preparing nanofluids and enhance their performance. This review provides information which helps improve the wide range usability of nanofluids for preparing stable nanofluids with good thermophysical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review of Applied Sciences and Engineering
International Review of Applied Sciences and Engineering Materials Science-Materials Science (miscellaneous)
CiteScore
2.30
自引率
0.00%
发文量
27
审稿时长
46 weeks
期刊介绍: International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.
期刊最新文献
Robust energy management system for electric vehicle BIM based collision tracking at the intersections of different building engineering systems at the design stage Possibility assessment for using protective coatings and polymer materials on tubing to prevent inorganic scaling on the inner surface of pipes Waste management and plastic waste recycling in Japan, China, Singapore and South Korea – What trends can be observed under different regulations Effect of aging of Al–Mg–Si/rare earth alloys: Microstructure and hardness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1