{"title":"fda批准的9h -硫代蒽基药物作为靶向VEGFR-2和COX-2的强效化疗药物的硅药物再利用","authors":"","doi":"10.33263/briac134.372","DOIUrl":null,"url":null,"abstract":"The approach of using existing drugs initially developed for one disease to treat other indications has found success across medical fields. This article emphasizes the drug repurposing of 9H-thioxanthene based on FDA-approved drugs for anticancer agents precisely targeting VEGFR-2 and COX-2. The investigated 9H-thioxanthene drugs 1-4 were analyzed for Lipinski's drug-likeness rule and ideal ADME parameters. The results show that all calculated physicochemical descriptors and pharmacokinetic properties are within the expected range. 9H-thioxanthene drugs 1-4 were subjected to molecular docking to determine their molecular interactions at the active sites of VEGFR-2 and COX-2. The molecular docking study revealed that all four 9H-thioxanthene drugs 1-4 were able to target VEGFR-2 and COX-2. In the future, these findings will be greatly favorable in augmenting the utility of the development of the investigated drugs 1-4 for cancer therapeutics specifically targeting VEGFR-2 and COX-2.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Drug Repurposing of 9H-Thioxanthene Based FDA-Approved Drugs as Potent Chemotherapeutics Targeting VEGFR-2 and COX-2\",\"authors\":\"\",\"doi\":\"10.33263/briac134.372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The approach of using existing drugs initially developed for one disease to treat other indications has found success across medical fields. This article emphasizes the drug repurposing of 9H-thioxanthene based on FDA-approved drugs for anticancer agents precisely targeting VEGFR-2 and COX-2. The investigated 9H-thioxanthene drugs 1-4 were analyzed for Lipinski's drug-likeness rule and ideal ADME parameters. The results show that all calculated physicochemical descriptors and pharmacokinetic properties are within the expected range. 9H-thioxanthene drugs 1-4 were subjected to molecular docking to determine their molecular interactions at the active sites of VEGFR-2 and COX-2. The molecular docking study revealed that all four 9H-thioxanthene drugs 1-4 were able to target VEGFR-2 and COX-2. In the future, these findings will be greatly favorable in augmenting the utility of the development of the investigated drugs 1-4 for cancer therapeutics specifically targeting VEGFR-2 and COX-2.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
In Silico Drug Repurposing of 9H-Thioxanthene Based FDA-Approved Drugs as Potent Chemotherapeutics Targeting VEGFR-2 and COX-2
The approach of using existing drugs initially developed for one disease to treat other indications has found success across medical fields. This article emphasizes the drug repurposing of 9H-thioxanthene based on FDA-approved drugs for anticancer agents precisely targeting VEGFR-2 and COX-2. The investigated 9H-thioxanthene drugs 1-4 were analyzed for Lipinski's drug-likeness rule and ideal ADME parameters. The results show that all calculated physicochemical descriptors and pharmacokinetic properties are within the expected range. 9H-thioxanthene drugs 1-4 were subjected to molecular docking to determine their molecular interactions at the active sites of VEGFR-2 and COX-2. The molecular docking study revealed that all four 9H-thioxanthene drugs 1-4 were able to target VEGFR-2 and COX-2. In the future, these findings will be greatly favorable in augmenting the utility of the development of the investigated drugs 1-4 for cancer therapeutics specifically targeting VEGFR-2 and COX-2.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.