Hiromichi Nishiyama Dr. Ph.D. , Akihiro Iiyama Prof. Ph.D. , Junji Inukai Prof. Ph.D.
{"title":"用时间分辨CARS光谱法分析了燃料电池运行过程中水在Nafion®膜内的分布和扩散系数","authors":"Hiromichi Nishiyama Dr. Ph.D. , Akihiro Iiyama Prof. Ph.D. , Junji Inukai Prof. Ph.D.","doi":"10.1016/j.powera.2021.100080","DOIUrl":null,"url":null,"abstract":"<div><p>The performance and stability of polymer electrolyte membrane fuel cells (PEMFCs) are directly affected by the distribution of water molecules inside the membrane. In this study, coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to measure the distribution of water in a Nafion® membrane under transient conditions after increasing the current density. At the cathodic surface of the membrane, an overshoot in amount of water was observed as a result of the increase in the rate of water production and electro-osmosis, while at the other locations in the membrane was observed a gradual increase of water as a result of water transport. The calculation of the water diffusion coefficient during power generation was subsequently carried out, which was consistent with the results of the previous values obtained statically.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000354/pdfft?md5=49159638ad2a89f6cddb6a4869e1155d&pid=1-s2.0-S2666248521000354-main.pdf","citationCount":"3","resultStr":"{\"title\":\"The distribution and diffusion coefficient of water inside a Nafion® membrane in a running fuel cell under transient conditions analyzed by operando time-resolved CARS spectroscopy\",\"authors\":\"Hiromichi Nishiyama Dr. Ph.D. , Akihiro Iiyama Prof. Ph.D. , Junji Inukai Prof. Ph.D.\",\"doi\":\"10.1016/j.powera.2021.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance and stability of polymer electrolyte membrane fuel cells (PEMFCs) are directly affected by the distribution of water molecules inside the membrane. In this study, coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to measure the distribution of water in a Nafion® membrane under transient conditions after increasing the current density. At the cathodic surface of the membrane, an overshoot in amount of water was observed as a result of the increase in the rate of water production and electro-osmosis, while at the other locations in the membrane was observed a gradual increase of water as a result of water transport. The calculation of the water diffusion coefficient during power generation was subsequently carried out, which was consistent with the results of the previous values obtained statically.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248521000354/pdfft?md5=49159638ad2a89f6cddb6a4869e1155d&pid=1-s2.0-S2666248521000354-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248521000354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248521000354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The distribution and diffusion coefficient of water inside a Nafion® membrane in a running fuel cell under transient conditions analyzed by operando time-resolved CARS spectroscopy
The performance and stability of polymer electrolyte membrane fuel cells (PEMFCs) are directly affected by the distribution of water molecules inside the membrane. In this study, coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to measure the distribution of water in a Nafion® membrane under transient conditions after increasing the current density. At the cathodic surface of the membrane, an overshoot in amount of water was observed as a result of the increase in the rate of water production and electro-osmosis, while at the other locations in the membrane was observed a gradual increase of water as a result of water transport. The calculation of the water diffusion coefficient during power generation was subsequently carried out, which was consistent with the results of the previous values obtained statically.