{"title":"微波吸收材料的隐身应用综述","authors":"Priyambada Sahoo, L. Saini, A. Dixit","doi":"10.1093/oxfmat/itac012","DOIUrl":null,"url":null,"abstract":"\n Implementation of stealth features on advanced airborne platforms (Aircrafts, Unmanned Air Vehicles, Missiles, etc.) has become a compulsion for each country, for denial/delay detection of these objects from enemy Radars, during tactical missions. Apart from the shaping of airframe, implementation of Microwave Absorbing Materials (MAMs) on identified locations of airborne vehicles is the only viable solution to reduce their Radar Cross Section (RCS) and eventually attain stealth capabilities. Numerous dielectric and magnetic class materials have been developed over the last few decades to fulfil the requirement for RCS reduction against various Radars operating in different frequency ranges. In this review, a detailed representation of almost entire range of materials used as MAMs has been provided along with their possible Microwave (MW) loss mechanism to fill the gap that existed for a systematic insight on MAMs till now. The current limitations, and future aspects are also discussed for the development of future stealth materials.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Microwave Absorbing Materials for Stealth Application: A Holistic Overview\",\"authors\":\"Priyambada Sahoo, L. Saini, A. Dixit\",\"doi\":\"10.1093/oxfmat/itac012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Implementation of stealth features on advanced airborne platforms (Aircrafts, Unmanned Air Vehicles, Missiles, etc.) has become a compulsion for each country, for denial/delay detection of these objects from enemy Radars, during tactical missions. Apart from the shaping of airframe, implementation of Microwave Absorbing Materials (MAMs) on identified locations of airborne vehicles is the only viable solution to reduce their Radar Cross Section (RCS) and eventually attain stealth capabilities. Numerous dielectric and magnetic class materials have been developed over the last few decades to fulfil the requirement for RCS reduction against various Radars operating in different frequency ranges. In this review, a detailed representation of almost entire range of materials used as MAMs has been provided along with their possible Microwave (MW) loss mechanism to fill the gap that existed for a systematic insight on MAMs till now. The current limitations, and future aspects are also discussed for the development of future stealth materials.\",\"PeriodicalId\":74385,\"journal\":{\"name\":\"Oxford open materials science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open materials science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfmat/itac012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itac012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microwave Absorbing Materials for Stealth Application: A Holistic Overview
Implementation of stealth features on advanced airborne platforms (Aircrafts, Unmanned Air Vehicles, Missiles, etc.) has become a compulsion for each country, for denial/delay detection of these objects from enemy Radars, during tactical missions. Apart from the shaping of airframe, implementation of Microwave Absorbing Materials (MAMs) on identified locations of airborne vehicles is the only viable solution to reduce their Radar Cross Section (RCS) and eventually attain stealth capabilities. Numerous dielectric and magnetic class materials have been developed over the last few decades to fulfil the requirement for RCS reduction against various Radars operating in different frequency ranges. In this review, a detailed representation of almost entire range of materials used as MAMs has been provided along with their possible Microwave (MW) loss mechanism to fill the gap that existed for a systematic insight on MAMs till now. The current limitations, and future aspects are also discussed for the development of future stealth materials.