{"title":"在工业4.0框架内实现智能生产工厂的混合模型","authors":"A. Samani, F. Saghafi","doi":"10.1108/jm2-07-2022-0185","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to introduce the model of implementation to run the smart production factories. The study also aims to investigate the Industry 4.0 technologies as enablers to deal with challenges in the way of implementation.\n\n\nDesign/methodology/approach\nThis contribution benefits from two teams of experts to evaluate the challenges and technologies of Industry 4.0. The Hanlon method is applied to evaluate, rank and prioritise the challenges which are initially scored by experts’ Team 1. Then, the adjacency matrix among enablers and challenges is extracted through the opinions of experts’ Team 2. The study also uses fuzzy cognitive map (FCM) to evaluate the real weights of technologies and challenges, rank and prioritise subsequently.\n\n\nFindings\nA total of 8 challenging obstacles and 24 key technologies have been evaluated. The findings reveals that recruit and retention of experienced managers, undefined return on investment and recruit and retention of multi-skilled workers are the most serious challenges in the way of implementing smart production factories. Furthermore, big data, IT-based management and Internet of Things are the top-ranked key enablers to face the challenges.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this study is one of the pioneering studies that uses Hanlon method to evaluate industrial challenges. Integrating Hanlon method and FCM leads to a comprehensive model of evaluation and ranking which is another novelty of this contribution. Although many research studies have been released to implement the smart factories, practical model of implementation for production factories is identified as a literature gap.\n","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid model of implementing a smart production factory within the Industry 4.0 framework\",\"authors\":\"A. Samani, F. Saghafi\",\"doi\":\"10.1108/jm2-07-2022-0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to introduce the model of implementation to run the smart production factories. The study also aims to investigate the Industry 4.0 technologies as enablers to deal with challenges in the way of implementation.\\n\\n\\nDesign/methodology/approach\\nThis contribution benefits from two teams of experts to evaluate the challenges and technologies of Industry 4.0. The Hanlon method is applied to evaluate, rank and prioritise the challenges which are initially scored by experts’ Team 1. Then, the adjacency matrix among enablers and challenges is extracted through the opinions of experts’ Team 2. The study also uses fuzzy cognitive map (FCM) to evaluate the real weights of technologies and challenges, rank and prioritise subsequently.\\n\\n\\nFindings\\nA total of 8 challenging obstacles and 24 key technologies have been evaluated. The findings reveals that recruit and retention of experienced managers, undefined return on investment and recruit and retention of multi-skilled workers are the most serious challenges in the way of implementing smart production factories. Furthermore, big data, IT-based management and Internet of Things are the top-ranked key enablers to face the challenges.\\n\\n\\nOriginality/value\\nTo the best of the authors’ knowledge, this study is one of the pioneering studies that uses Hanlon method to evaluate industrial challenges. Integrating Hanlon method and FCM leads to a comprehensive model of evaluation and ranking which is another novelty of this contribution. Although many research studies have been released to implement the smart factories, practical model of implementation for production factories is identified as a literature gap.\\n\",\"PeriodicalId\":16349,\"journal\":{\"name\":\"Journal of Modelling in Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modelling in Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jm2-07-2022-0185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-07-2022-0185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
A hybrid model of implementing a smart production factory within the Industry 4.0 framework
Purpose
This study aims to introduce the model of implementation to run the smart production factories. The study also aims to investigate the Industry 4.0 technologies as enablers to deal with challenges in the way of implementation.
Design/methodology/approach
This contribution benefits from two teams of experts to evaluate the challenges and technologies of Industry 4.0. The Hanlon method is applied to evaluate, rank and prioritise the challenges which are initially scored by experts’ Team 1. Then, the adjacency matrix among enablers and challenges is extracted through the opinions of experts’ Team 2. The study also uses fuzzy cognitive map (FCM) to evaluate the real weights of technologies and challenges, rank and prioritise subsequently.
Findings
A total of 8 challenging obstacles and 24 key technologies have been evaluated. The findings reveals that recruit and retention of experienced managers, undefined return on investment and recruit and retention of multi-skilled workers are the most serious challenges in the way of implementing smart production factories. Furthermore, big data, IT-based management and Internet of Things are the top-ranked key enablers to face the challenges.
Originality/value
To the best of the authors’ knowledge, this study is one of the pioneering studies that uses Hanlon method to evaluate industrial challenges. Integrating Hanlon method and FCM leads to a comprehensive model of evaluation and ranking which is another novelty of this contribution. Although many research studies have been released to implement the smart factories, practical model of implementation for production factories is identified as a literature gap.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.