基于模糊逻辑补偿的混合电力系统电能质量改善

S. Das, D. Mishra, P. Ray, S. Salkuti, A. K. Sahoo
{"title":"基于模糊逻辑补偿的混合电力系统电能质量改善","authors":"S. Das, D. Mishra, P. Ray, S. Salkuti, A. K. Sahoo","doi":"10.11591/IJPEDS.V12.I1.PP576-584","DOIUrl":null,"url":null,"abstract":"This paper is based on the improvement of power quality (PQ) using fuel cell and fuzzy based controller. By using the proposed controller, the quality of power in the grid system especially in micro grid connected with non- linear and unbalanced load is enhanced. The configuration of the system is combined with hybrid arrangement of photovoltaic ([PV) with wind energy conversion system (WECS), fuel cell (FC) including the compressed air energy storage system (CAES) where the power management is controlled by using the distributed power sharing technique. In this proposed system the distortions in voltage at point of common coupling (PCC) is decreased by using the FC which acts as compensator in hybrid system. Reference current is developed which depends on real and reactive power of the source connected to the compensator. Based on demand of power for nonlinear load, without using any external communication interfaces, the proposed control theory can change the modes of operation and can compensate the unbalance in the system which is caused due to single-phase micro sources and load changes. The complete productive design of the micro-sources and power electronic converters are presented in the paper. The operation and performance of the proposed controller used in microgrid is validated through simulation in MATLAB/Simulink environment.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"576-584"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Power quality improvement using fuzzy logic-based compensation in a hybrid power system\",\"authors\":\"S. Das, D. Mishra, P. Ray, S. Salkuti, A. K. Sahoo\",\"doi\":\"10.11591/IJPEDS.V12.I1.PP576-584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is based on the improvement of power quality (PQ) using fuel cell and fuzzy based controller. By using the proposed controller, the quality of power in the grid system especially in micro grid connected with non- linear and unbalanced load is enhanced. The configuration of the system is combined with hybrid arrangement of photovoltaic ([PV) with wind energy conversion system (WECS), fuel cell (FC) including the compressed air energy storage system (CAES) where the power management is controlled by using the distributed power sharing technique. In this proposed system the distortions in voltage at point of common coupling (PCC) is decreased by using the FC which acts as compensator in hybrid system. Reference current is developed which depends on real and reactive power of the source connected to the compensator. Based on demand of power for nonlinear load, without using any external communication interfaces, the proposed control theory can change the modes of operation and can compensate the unbalance in the system which is caused due to single-phase micro sources and load changes. The complete productive design of the micro-sources and power electronic converters are presented in the paper. The operation and performance of the proposed controller used in microgrid is validated through simulation in MATLAB/Simulink environment.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"12 1\",\"pages\":\"576-584\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V12.I1.PP576-584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP576-584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 10

摘要

本文基于燃料电池和模糊控制器对电能质量的改善。通过使用所提出的控制器,可以提高电网系统的电能质量,特别是在具有非线性和不平衡负载的微电网中。该系统的配置与光伏([PV)与风能转换系统(WECS)、燃料电池(FC)(包括压缩空气储能系统(CAES))的混合布置相结合,其中通过使用分布式功率共享技术来控制功率管理通过在混合系统中使用FC作为补偿器来降低。产生的参考电流取决于连接到补偿器的电源的有功功率和无功功率。根据非线性负载对功率的需求,在不使用任何外部通信接口的情况下,所提出的控制理论可以改变操作模式,并可以补偿由于单相微源和负载变化引起的系统不平衡。本文介绍了微型电源和电力电子转换器的完整生产设计。通过在MATLAB/Simulink环境下的仿真,验证了该控制器在微电网中的运行和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power quality improvement using fuzzy logic-based compensation in a hybrid power system
This paper is based on the improvement of power quality (PQ) using fuel cell and fuzzy based controller. By using the proposed controller, the quality of power in the grid system especially in micro grid connected with non- linear and unbalanced load is enhanced. The configuration of the system is combined with hybrid arrangement of photovoltaic ([PV) with wind energy conversion system (WECS), fuel cell (FC) including the compressed air energy storage system (CAES) where the power management is controlled by using the distributed power sharing technique. In this proposed system the distortions in voltage at point of common coupling (PCC) is decreased by using the FC which acts as compensator in hybrid system. Reference current is developed which depends on real and reactive power of the source connected to the compensator. Based on demand of power for nonlinear load, without using any external communication interfaces, the proposed control theory can change the modes of operation and can compensate the unbalance in the system which is caused due to single-phase micro sources and load changes. The complete productive design of the micro-sources and power electronic converters are presented in the paper. The operation and performance of the proposed controller used in microgrid is validated through simulation in MATLAB/Simulink environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Power Electronics and Drive Systems
International Journal of Power Electronics and Drive Systems Energy-Energy Engineering and Power Technology
CiteScore
3.50
自引率
0.00%
发文量
0
期刊介绍: International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
期刊最新文献
Mitigation of harmonic distortions in third rail electrical systems A new direct current circuit breaker with current regeneration capability Modeling and Control of a Hybrid DC/DC/AC Converter to Transfer Power under Different Power Management Strategies Energy, economic and environmental analysis of fuzzy logic controllers used in smart buildings Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1