4种黑茶蛋白水解物抗糖尿病作用的体外评价

IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences Journal of Applied Botany and Food Quality-Angewandte Botanik Pub Date : 2019-03-04 DOI:10.5073/JABFQ.2019.092.008
Keying Su, Xinliang Mao, Li Ai, Xuewu Zhang
{"title":"4种黑茶蛋白水解物抗糖尿病作用的体外评价","authors":"Keying Su, Xinliang Mao, Li Ai, Xuewu Zhang","doi":"10.5073/JABFQ.2019.092.008","DOIUrl":null,"url":null,"abstract":"The contributions of four kinds of dark tea (Camellia sinensis L.) proteins and their hydrolysates to hypoglycemic activity were investigated in vitro. Four kinds of water-extracted dark tea proteins were hydrolyzed with trypsin and Alcalase, respectively. The complete proteins had α-amylase inhibitory activity with half maximal inhibitory concentration (IC50) values ranging from 1.27 to 2.78 mg/mL. Most of the dark tea proteins and hydrolysates significantly inhibited α-glucosidase and dipeptidyl peptidase (DPP-IV), with IC50 values in the range of 0.0103-1.3114 mg/mL and 0.1000-1.3364 mg/mL, respectively. In general, Heimaojian (HMJ) and Qianliang (QL) hydrolysates displayed high α-glucosidase inhibitory activity, while HMJ, Fuzhuan (FZ), and Heizhuan (HZ) hydrolysates exhibited a strong ability to inhibit DPP-IV. This study demonstrates the potential of dark tea proteins and their hydrolysates as a source of functional food and medicine for the control of type 2 diabetes.","PeriodicalId":56276,"journal":{"name":"Journal of Applied Botany and Food Quality-Angewandte Botanik","volume":"92 1","pages":"57-63"},"PeriodicalIF":1.2000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"In vitro assessment of anti-diabetic potential of 4 kinds of dark tea (Camellia sinensis L.) protein hydrolysates\",\"authors\":\"Keying Su, Xinliang Mao, Li Ai, Xuewu Zhang\",\"doi\":\"10.5073/JABFQ.2019.092.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contributions of four kinds of dark tea (Camellia sinensis L.) proteins and their hydrolysates to hypoglycemic activity were investigated in vitro. Four kinds of water-extracted dark tea proteins were hydrolyzed with trypsin and Alcalase, respectively. The complete proteins had α-amylase inhibitory activity with half maximal inhibitory concentration (IC50) values ranging from 1.27 to 2.78 mg/mL. Most of the dark tea proteins and hydrolysates significantly inhibited α-glucosidase and dipeptidyl peptidase (DPP-IV), with IC50 values in the range of 0.0103-1.3114 mg/mL and 0.1000-1.3364 mg/mL, respectively. In general, Heimaojian (HMJ) and Qianliang (QL) hydrolysates displayed high α-glucosidase inhibitory activity, while HMJ, Fuzhuan (FZ), and Heizhuan (HZ) hydrolysates exhibited a strong ability to inhibit DPP-IV. This study demonstrates the potential of dark tea proteins and their hydrolysates as a source of functional food and medicine for the control of type 2 diabetes.\",\"PeriodicalId\":56276,\"journal\":{\"name\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"volume\":\"92 1\",\"pages\":\"57-63\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5073/JABFQ.2019.092.008\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Botany and Food Quality-Angewandte Botanik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5073/JABFQ.2019.092.008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 8

摘要

研究了四种黑茶蛋白及其水解产物对体外降血糖的作用。用胰蛋白酶和Alcalase分别对4种水提黑茶蛋白进行水解。完整蛋白具有α-淀粉酶抑制活性,半数最大抑制浓度(IC50)为1.27 ~ 2.78 mg/mL。大部分黑茶蛋白和水解产物对α-葡萄糖苷酶和二肽基肽酶(DPP-IV)的抑制作用显著,IC50值分别为0.0103 ~ 1.3114 mg/mL和0.1000 ~ 1.3364 mg/mL。总体而言,黑毛尖(HMJ)和钱亮(QL)水解产物具有较高的α-葡萄糖苷酶抑制活性,而HMJ、扶直(FZ)和黑直(HZ)水解产物具有较强的抑制DPP-IV的能力。这项研究证明了黑茶蛋白及其水解物作为控制2型糖尿病的功能性食品和药物来源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro assessment of anti-diabetic potential of 4 kinds of dark tea (Camellia sinensis L.) protein hydrolysates
The contributions of four kinds of dark tea (Camellia sinensis L.) proteins and their hydrolysates to hypoglycemic activity were investigated in vitro. Four kinds of water-extracted dark tea proteins were hydrolyzed with trypsin and Alcalase, respectively. The complete proteins had α-amylase inhibitory activity with half maximal inhibitory concentration (IC50) values ranging from 1.27 to 2.78 mg/mL. Most of the dark tea proteins and hydrolysates significantly inhibited α-glucosidase and dipeptidyl peptidase (DPP-IV), with IC50 values in the range of 0.0103-1.3114 mg/mL and 0.1000-1.3364 mg/mL, respectively. In general, Heimaojian (HMJ) and Qianliang (QL) hydrolysates displayed high α-glucosidase inhibitory activity, while HMJ, Fuzhuan (FZ), and Heizhuan (HZ) hydrolysates exhibited a strong ability to inhibit DPP-IV. This study demonstrates the potential of dark tea proteins and their hydrolysates as a source of functional food and medicine for the control of type 2 diabetes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊介绍: The Journal of Applied Botany and Food Quality is the Open Access journal of the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It provides a platform for scientists to disseminate recent results of applied plant research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry. The articles have a clear focus on botanical and plant quality aspects and contain new and innovative information based on state-of-the-art methodologies.
期刊最新文献
Experience and successful treatment of craniocerebral gunshot injury at a regional trauma center in Korea: a case report and literature review. Is Chara corallina a suitable model plant for studying cell-failure mechanisms in fruit skins? Besides variety, also season and ripening stage have a major influence on fruit pulp aroma of cacao (Theobroma cacao L.) Effects of soil warming and altered precipitation patterns on photosynthesis, biomass production and yield of barley Sugar content and organic acid profiles of local apple cultivars recovered from mountain zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1