{"title":"C5/C6烷烃催化转化烯烃的研究进展","authors":"Xin Wang, Youhao Xu","doi":"10.1007/s10563-022-09367-7","DOIUrl":null,"url":null,"abstract":"<div><p>Light naphtha (C<sub>5</sub>–C<sub>6</sub> alkanes) is commonly used as a feedstock for steam cracking or catalytic cracking to produce ethylene and propylene. This paper summarizes the progress of C<sub>5</sub>/C<sub>6</sub> alkanes steam cracking and catalytic cracking, but the key problem of the above method is the high yield of low-value C<sub>1</sub>–C<sub>3</sub> alkanes. When C<sub>5</sub>/C<sub>6</sub> olefin is used as the feedstock of catalytic cracking, the ethylene and propylene yields are high, while the C<sub>1</sub>–C<sub>3</sub> alkanes yield is low. It is of scientific value to dehydrogenate the C<sub>5</sub>/C<sub>6</sub> alkanes into the corresponding olefins, and effectively convert the olefins into ethylene and propylene. This paper reviews recent progress of direct catalytic dehydrogenation and oxidative dehydrogenation of C<sub>5</sub>/C<sub>6</sub> alkanes, and points out that the key is to develop C<sub>5</sub>/C<sub>6</sub> alkanes dehydrogenation catalyst for selective preparation of corresponding mono-olefins. The main issues about how to develop highly selective C<sub>5</sub>/C<sub>6</sub> alkanes dehydrogenation catalysts are proposed.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 4","pages":"245 - 260"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10563-022-09367-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Catalytic Conversion of C5/C6 Alkanes to Olefins: A Review\",\"authors\":\"Xin Wang, Youhao Xu\",\"doi\":\"10.1007/s10563-022-09367-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Light naphtha (C<sub>5</sub>–C<sub>6</sub> alkanes) is commonly used as a feedstock for steam cracking or catalytic cracking to produce ethylene and propylene. This paper summarizes the progress of C<sub>5</sub>/C<sub>6</sub> alkanes steam cracking and catalytic cracking, but the key problem of the above method is the high yield of low-value C<sub>1</sub>–C<sub>3</sub> alkanes. When C<sub>5</sub>/C<sub>6</sub> olefin is used as the feedstock of catalytic cracking, the ethylene and propylene yields are high, while the C<sub>1</sub>–C<sub>3</sub> alkanes yield is low. It is of scientific value to dehydrogenate the C<sub>5</sub>/C<sub>6</sub> alkanes into the corresponding olefins, and effectively convert the olefins into ethylene and propylene. This paper reviews recent progress of direct catalytic dehydrogenation and oxidative dehydrogenation of C<sub>5</sub>/C<sub>6</sub> alkanes, and points out that the key is to develop C<sub>5</sub>/C<sub>6</sub> alkanes dehydrogenation catalyst for selective preparation of corresponding mono-olefins. The main issues about how to develop highly selective C<sub>5</sub>/C<sub>6</sub> alkanes dehydrogenation catalysts are proposed.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"26 4\",\"pages\":\"245 - 260\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10563-022-09367-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-022-09367-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09367-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent Advances in Catalytic Conversion of C5/C6 Alkanes to Olefins: A Review
Light naphtha (C5–C6 alkanes) is commonly used as a feedstock for steam cracking or catalytic cracking to produce ethylene and propylene. This paper summarizes the progress of C5/C6 alkanes steam cracking and catalytic cracking, but the key problem of the above method is the high yield of low-value C1–C3 alkanes. When C5/C6 olefin is used as the feedstock of catalytic cracking, the ethylene and propylene yields are high, while the C1–C3 alkanes yield is low. It is of scientific value to dehydrogenate the C5/C6 alkanes into the corresponding olefins, and effectively convert the olefins into ethylene and propylene. This paper reviews recent progress of direct catalytic dehydrogenation and oxidative dehydrogenation of C5/C6 alkanes, and points out that the key is to develop C5/C6 alkanes dehydrogenation catalyst for selective preparation of corresponding mono-olefins. The main issues about how to develop highly selective C5/C6 alkanes dehydrogenation catalysts are proposed.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.