非化学计量比的铜酸锂Li2+2xCu1-2xO2-x的结构分析。锂含量和热处理的影响

Luis Palacios, G. González, O. Ovalle-Encinia, E. Lima, E. Ramírez-Meneses, H. Pfeiffer
{"title":"非化学计量比的铜酸锂Li2+2xCu1-2xO2-x的结构分析。锂含量和热处理的影响","authors":"Luis Palacios, G. González, O. Ovalle-Encinia, E. Lima, E. Ramírez-Meneses, H. Pfeiffer","doi":"10.22201/icat.24486736e.2023.21.3.1700","DOIUrl":null,"url":null,"abstract":"Lithium cuprate (Li2CuO2) is being used for a wide range of applications due to its high lithium diffusion through the layer structure. Moreover, Li2+2xCu1-xO2-x non-stoichiometric material shows enhanced physicochemical properties. Therefore, lithium location understanding is highly important for lithium cuprate applications. This paper reports the structural coherence analysis, local and long atomic arrangement of Li2+2xCu1-xO2-x using X-ray diffraction (XRD), pair distribution function (PDF) and solid-state nuclear magnetic resonance (NMR) techniques. Li2CuO2, containing different excess quantities of lithium (from 0 to 60 at%), were synthesized by solid-state reaction. The synthesized ceramics presented nonstoichiometric structures, with Li2CuO2 type-structure. Two structural models were proposed to explain the high enhancement physicochemical properties of these ceramics; (i) the extra lithium atoms substitute copper sites, and (ii) lithium species occupy interstitial sites in the crystalline structure. Additionally, further thermal treatments rearrange the non-stoichiometric crystalline structures into the stable Li2CuO2 phase.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural analysis of non-stoichiometric lithium cuprates, Li2+2xCu1-2xO2-x. Effects of lithium content and thermal treatments\",\"authors\":\"Luis Palacios, G. González, O. Ovalle-Encinia, E. Lima, E. Ramírez-Meneses, H. Pfeiffer\",\"doi\":\"10.22201/icat.24486736e.2023.21.3.1700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium cuprate (Li2CuO2) is being used for a wide range of applications due to its high lithium diffusion through the layer structure. Moreover, Li2+2xCu1-xO2-x non-stoichiometric material shows enhanced physicochemical properties. Therefore, lithium location understanding is highly important for lithium cuprate applications. This paper reports the structural coherence analysis, local and long atomic arrangement of Li2+2xCu1-xO2-x using X-ray diffraction (XRD), pair distribution function (PDF) and solid-state nuclear magnetic resonance (NMR) techniques. Li2CuO2, containing different excess quantities of lithium (from 0 to 60 at%), were synthesized by solid-state reaction. The synthesized ceramics presented nonstoichiometric structures, with Li2CuO2 type-structure. Two structural models were proposed to explain the high enhancement physicochemical properties of these ceramics; (i) the extra lithium atoms substitute copper sites, and (ii) lithium species occupy interstitial sites in the crystalline structure. Additionally, further thermal treatments rearrange the non-stoichiometric crystalline structures into the stable Li2CuO2 phase.\",\"PeriodicalId\":15073,\"journal\":{\"name\":\"Journal of Applied Research and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/icat.24486736e.2023.21.3.1700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.3.1700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

铜酸锂(Li2CuO2)由于其通过层结构的高锂扩散性而被用于广泛的应用。此外,Li2+2xCu1-xO2-x非化学计量材料显示出增强的物理化学性质。因此,了解锂的位置对于铜酸锂的应用非常重要。本文利用x射线衍射(XRD)、对分布函数(PDF)和固态核磁共振(NMR)技术对Li2+2xCu1-xO2-x的结构相干分析、局域和长原子排列进行了研究。通过固态反应合成了含有不同过量锂(0至60at%)的Li2CuO2。合成的陶瓷呈现非化学计量结构,具有Li2CuO2型结构。提出了两个结构模型来解释这些陶瓷的高增强物理化学性质;(i) 额外的锂原子取代铜位点,以及(ii)锂物种占据晶体结构中的间隙位点。此外,进一步的热处理将非化学计量的晶体结构重新排列成稳定的Li2CuO2相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural analysis of non-stoichiometric lithium cuprates, Li2+2xCu1-2xO2-x. Effects of lithium content and thermal treatments
Lithium cuprate (Li2CuO2) is being used for a wide range of applications due to its high lithium diffusion through the layer structure. Moreover, Li2+2xCu1-xO2-x non-stoichiometric material shows enhanced physicochemical properties. Therefore, lithium location understanding is highly important for lithium cuprate applications. This paper reports the structural coherence analysis, local and long atomic arrangement of Li2+2xCu1-xO2-x using X-ray diffraction (XRD), pair distribution function (PDF) and solid-state nuclear magnetic resonance (NMR) techniques. Li2CuO2, containing different excess quantities of lithium (from 0 to 60 at%), were synthesized by solid-state reaction. The synthesized ceramics presented nonstoichiometric structures, with Li2CuO2 type-structure. Two structural models were proposed to explain the high enhancement physicochemical properties of these ceramics; (i) the extra lithium atoms substitute copper sites, and (ii) lithium species occupy interstitial sites in the crystalline structure. Additionally, further thermal treatments rearrange the non-stoichiometric crystalline structures into the stable Li2CuO2 phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Research and Technology
Journal of Applied Research and Technology 工程技术-工程:电子与电气
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work. The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs. JART classifies research into the following main fields: -Material Science: Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors. -Computer Science: Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering. -Industrial Engineering: Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies -Electronic Engineering: Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation. -Instrumentation engineering and science: Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.
期刊最新文献
Use of recycled concrete and rice husk ash for concrete: A review Health assessment of welding by-products in a linear welding automation: Temperature and smoke concentration measurements matlab based graphical user interface for the monitoring and early detection of keratoconus Identification of geothermal potential zone associated with land surface temperature derived from Landsat 8 data using split-window algorithm Effect of microcarbon particle size and dispersion on the electrical conductivity of LLDPE-carbon composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1