E. Scullion, H. Morgan, H. Lin, V. Fedun, R. Morton
{"title":"苏利斯:这是欧空局2050年航次的日冕磁力探测器","authors":"E. Scullion, H. Morgan, H. Lin, V. Fedun, R. Morton","doi":"10.1007/s10686-022-09877-2","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetism dominates the structure and dynamics of the solar corona. To understand the true nature of the solar corona and the long-standing coronal heating problem requires measuring the vector magnetic field of the corona at a sufficiently high resolution (spatially and temporally) across a large Field-of-View (FOV). Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 1-10 G, and the difficulty associated with observing the extremely faint solar corona emission. With the Solar cUbesats for Linked Imaging Spectro-polarimetry (SULIS) mission, we plan to finally observe, in detail and over the long-term, uninterrupted measurements of the coronal magnetic vector field using a new and very affordable instrument design concept. This will be profoundly important in the study of local atmospheric coronal heating processes, as well as in measuring the nature of magnetic clouds, in particular, within geoeffective Earth-bound Coronal Mass Ejections (CMEs) for more accurate forecasting of severe space weather activity.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"317 - 334"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09877-2.pdf","citationCount":"1","resultStr":"{\"title\":\"SULIS: A coronal magnetism explorer for ESA’s Voyage 2050\",\"authors\":\"E. Scullion, H. Morgan, H. Lin, V. Fedun, R. Morton\",\"doi\":\"10.1007/s10686-022-09877-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetism dominates the structure and dynamics of the solar corona. To understand the true nature of the solar corona and the long-standing coronal heating problem requires measuring the vector magnetic field of the corona at a sufficiently high resolution (spatially and temporally) across a large Field-of-View (FOV). Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 1-10 G, and the difficulty associated with observing the extremely faint solar corona emission. With the Solar cUbesats for Linked Imaging Spectro-polarimetry (SULIS) mission, we plan to finally observe, in detail and over the long-term, uninterrupted measurements of the coronal magnetic vector field using a new and very affordable instrument design concept. This will be profoundly important in the study of local atmospheric coronal heating processes, as well as in measuring the nature of magnetic clouds, in particular, within geoeffective Earth-bound Coronal Mass Ejections (CMEs) for more accurate forecasting of severe space weather activity.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"54 2-3\",\"pages\":\"317 - 334\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10686-022-09877-2.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-022-09877-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-022-09877-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
SULIS: A coronal magnetism explorer for ESA’s Voyage 2050
Magnetism dominates the structure and dynamics of the solar corona. To understand the true nature of the solar corona and the long-standing coronal heating problem requires measuring the vector magnetic field of the corona at a sufficiently high resolution (spatially and temporally) across a large Field-of-View (FOV). Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 1-10 G, and the difficulty associated with observing the extremely faint solar corona emission. With the Solar cUbesats for Linked Imaging Spectro-polarimetry (SULIS) mission, we plan to finally observe, in detail and over the long-term, uninterrupted measurements of the coronal magnetic vector field using a new and very affordable instrument design concept. This will be profoundly important in the study of local atmospheric coronal heating processes, as well as in measuring the nature of magnetic clouds, in particular, within geoeffective Earth-bound Coronal Mass Ejections (CMEs) for more accurate forecasting of severe space weather activity.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.