Luis Espinoza , Jose Antonio Bea , Sourojeet Chakraborty , Daniela Galatro
{"title":"用有限元法和离散余弦变换法比较椭圆基燃气管道纵向裂纹的应力强度因子","authors":"Luis Espinoza , Jose Antonio Bea , Sourojeet Chakraborty , Daniela Galatro","doi":"10.1016/j.finmec.2023.100233","DOIUrl":null,"url":null,"abstract":"<div><p>While several theoretical and experimental studies for cracks in piping exist, most pertain to pipelines, equipment, or fittings under pressure conditions or under stress corrosion conditions at welding. Element finite Method models have occasionally supplemented experimental methods, to investigate such operational fails. In this approach we explore technical options to comprehensively understand crack propagations, by first, evaluating the Stress Intensity Factor <span><math><mrow><mo>(</mo><msub><mi>K</mi><mi>I</mi></msub><mo>)</mo></mrow></math></span> using ANSYS Parametric design language then, comparing with the Displacement Correlation Technique, for an elliptical base gas piping (20″APL Gr. B) suffering a longitudinal welding-induced crack, under a compression of 1.86 MPa. The <span><math><mrow><msub><mi>K</mi><mi>I</mi></msub><mspace></mspace></mrow></math></span>value for an Electric Resistance Welding crack was calculated for the two-dimensional plane, for a quarter-length of propagated crack along the elliptical front. The <span><math><msub><mi>K</mi><mi>I</mi></msub></math></span> value estimates are 0.94x<span><math><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> MPa<span><math><msqrt><mi>m</mi></msqrt></math></span> from ANSYS Parametric design language vs. 0.7<span><math><mrow><mn>0</mn><mi>x</mi><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> MPa<span><math><mrow><msqrt><mi>m</mi></msqrt><mspace></mspace></mrow></math></span>from DCT the two methods are close less than 1. These results were compared with the theorical stress intensity factor for elliptical cracks by Broek<span><sup>1</sup></span> David called elementary engineering fracture mechanics where the values were 0.5x<span><math><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> MPa<span><math><msqrt><mi>m</mi></msqrt></math></span>. We found that the proposed FEM method for estimating <span><math><mrow><mo>(</mo><msub><mi>K</mi><mi>I</mi></msub><mo>)</mo></mrow></math></span>is the approach that is closest to the theoretical value.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the stress intensity factor for a longitudinal crack in an elliptical base gas pipe, using FEM vs. DCT methods\",\"authors\":\"Luis Espinoza , Jose Antonio Bea , Sourojeet Chakraborty , Daniela Galatro\",\"doi\":\"10.1016/j.finmec.2023.100233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While several theoretical and experimental studies for cracks in piping exist, most pertain to pipelines, equipment, or fittings under pressure conditions or under stress corrosion conditions at welding. Element finite Method models have occasionally supplemented experimental methods, to investigate such operational fails. In this approach we explore technical options to comprehensively understand crack propagations, by first, evaluating the Stress Intensity Factor <span><math><mrow><mo>(</mo><msub><mi>K</mi><mi>I</mi></msub><mo>)</mo></mrow></math></span> using ANSYS Parametric design language then, comparing with the Displacement Correlation Technique, for an elliptical base gas piping (20″APL Gr. B) suffering a longitudinal welding-induced crack, under a compression of 1.86 MPa. The <span><math><mrow><msub><mi>K</mi><mi>I</mi></msub><mspace></mspace></mrow></math></span>value for an Electric Resistance Welding crack was calculated for the two-dimensional plane, for a quarter-length of propagated crack along the elliptical front. The <span><math><msub><mi>K</mi><mi>I</mi></msub></math></span> value estimates are 0.94x<span><math><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> MPa<span><math><msqrt><mi>m</mi></msqrt></math></span> from ANSYS Parametric design language vs. 0.7<span><math><mrow><mn>0</mn><mi>x</mi><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> MPa<span><math><mrow><msqrt><mi>m</mi></msqrt><mspace></mspace></mrow></math></span>from DCT the two methods are close less than 1. These results were compared with the theorical stress intensity factor for elliptical cracks by Broek<span><sup>1</sup></span> David called elementary engineering fracture mechanics where the values were 0.5x<span><math><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> MPa<span><math><msqrt><mi>m</mi></msqrt></math></span>. We found that the proposed FEM method for estimating <span><math><mrow><mo>(</mo><msub><mi>K</mi><mi>I</mi></msub><mo>)</mo></mrow></math></span>is the approach that is closest to the theoretical value.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
虽然存在一些关于管道裂缝的理论和实验研究,但大多数都是关于管道、设备或配件在压力条件下或焊接时的应力腐蚀条件下的研究。单元有限方法模型偶尔会补充实验方法,以研究这种操作失败。在这种方法中,我们探索了全面理解裂纹扩展的技术选择,首先,使用ANSYS参数化设计语言评估应力强度因子(KI),然后与位移相关技术进行比较,在1.86 MPa的压缩下,对椭圆基燃气管道(20″APL Gr. B)产生纵向焊接裂纹。在二维平面上,计算了沿椭圆前沿延伸1 / 4长度的电阻焊裂纹的kiv值。来自ANSYS参数化设计语言的KI值估计值为0.94x(10)−3 MPam,而来自DCT的KI值估计值为0.70x(10)−2 MPam,两种方法接近小于1。这些结果与Broek1 David(称为初级工程断裂力学)的椭圆裂纹的理论应力强度因子进行了比较,其值为0.5x(10)−1 MPam。我们发现,所提出的估算KI的有限元方法是最接近理论值的方法。
Comparison of the stress intensity factor for a longitudinal crack in an elliptical base gas pipe, using FEM vs. DCT methods
While several theoretical and experimental studies for cracks in piping exist, most pertain to pipelines, equipment, or fittings under pressure conditions or under stress corrosion conditions at welding. Element finite Method models have occasionally supplemented experimental methods, to investigate such operational fails. In this approach we explore technical options to comprehensively understand crack propagations, by first, evaluating the Stress Intensity Factor using ANSYS Parametric design language then, comparing with the Displacement Correlation Technique, for an elliptical base gas piping (20″APL Gr. B) suffering a longitudinal welding-induced crack, under a compression of 1.86 MPa. The value for an Electric Resistance Welding crack was calculated for the two-dimensional plane, for a quarter-length of propagated crack along the elliptical front. The value estimates are 0.94x MPa from ANSYS Parametric design language vs. 0.7 MPafrom DCT the two methods are close less than 1. These results were compared with the theorical stress intensity factor for elliptical cracks by Broek1 David called elementary engineering fracture mechanics where the values were 0.5x MPa. We found that the proposed FEM method for estimating is the approach that is closest to the theoretical value.