Julio R. Ronceros Rivas , Amilcar Porto Pimenta , Jusceline Sumara Lessa , Gustavo A. Ronceros Rivas
{"title":"基于雾化几何参数的压力旋流雾化器Sauter平均直径的改进理论公式","authors":"Julio R. Ronceros Rivas , Amilcar Porto Pimenta , Jusceline Sumara Lessa , Gustavo A. Ronceros Rivas","doi":"10.1016/j.jppr.2022.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>This study discusses the development of a mathematical model that is capable of predicting the drop size mean diameter of the spray generated by a pressure swirl atomizer, considering the effects of the liquid's viscosity and the geometrical parameters of this type of injector, as well as the angle of incidence of the inlet channels (<em>ψ</em> and <em>β</em>) and atomization parameters (<em>k, ϰ</em>), obtained from hyperbolic relations. Additionally, this model investigates the phenomena of rupture and stability that are observed in the conical liquid film, in which the importance of a new geometrical parameter of atomization, “<em>ϰ</em>”, which immediately influences the drop size diameter of the spray, should be highlighted. The results that are obtained using this model are compared with analytical results of Couto, Wang and Lefebvre, Jasuja, Radcliffe and Lefebvre, experimental results and numerics (Hollow cone atomization model), using the Ansys Fluent software for the validation and consistency of the model proposed in Rivas (2015). This model yields good approximations as compared to that yielded using other alternative mathematical models, demonstrating that the new atomization geometric parameter “<em>ϰ</em>” is an “adjustment” factor that exhibits considerable significance while designing pressure swirl atomizers according to the required SMD. Furthermore, this model is easy to use, with reliable results, and has the advantage of saving computational time.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"11 2","pages":"Pages 240-252"},"PeriodicalIF":5.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X22000360/pdfft?md5=f75bd84ae9059e20bbe1c42c5557dda3&pid=1-s2.0-S2212540X22000360-main.pdf","citationCount":"1","resultStr":"{\"title\":\"An improved theoretical formulation for Sauter mean diameter of pressure-swirl atomizers using geometrical parameters of atomization\",\"authors\":\"Julio R. Ronceros Rivas , Amilcar Porto Pimenta , Jusceline Sumara Lessa , Gustavo A. Ronceros Rivas\",\"doi\":\"10.1016/j.jppr.2022.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study discusses the development of a mathematical model that is capable of predicting the drop size mean diameter of the spray generated by a pressure swirl atomizer, considering the effects of the liquid's viscosity and the geometrical parameters of this type of injector, as well as the angle of incidence of the inlet channels (<em>ψ</em> and <em>β</em>) and atomization parameters (<em>k, ϰ</em>), obtained from hyperbolic relations. Additionally, this model investigates the phenomena of rupture and stability that are observed in the conical liquid film, in which the importance of a new geometrical parameter of atomization, “<em>ϰ</em>”, which immediately influences the drop size diameter of the spray, should be highlighted. The results that are obtained using this model are compared with analytical results of Couto, Wang and Lefebvre, Jasuja, Radcliffe and Lefebvre, experimental results and numerics (Hollow cone atomization model), using the Ansys Fluent software for the validation and consistency of the model proposed in Rivas (2015). This model yields good approximations as compared to that yielded using other alternative mathematical models, demonstrating that the new atomization geometric parameter “<em>ϰ</em>” is an “adjustment” factor that exhibits considerable significance while designing pressure swirl atomizers according to the required SMD. Furthermore, this model is easy to use, with reliable results, and has the advantage of saving computational time.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"11 2\",\"pages\":\"Pages 240-252\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212540X22000360/pdfft?md5=f75bd84ae9059e20bbe1c42c5557dda3&pid=1-s2.0-S2212540X22000360-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X22000360\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X22000360","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
An improved theoretical formulation for Sauter mean diameter of pressure-swirl atomizers using geometrical parameters of atomization
This study discusses the development of a mathematical model that is capable of predicting the drop size mean diameter of the spray generated by a pressure swirl atomizer, considering the effects of the liquid's viscosity and the geometrical parameters of this type of injector, as well as the angle of incidence of the inlet channels (ψ and β) and atomization parameters (k, ϰ), obtained from hyperbolic relations. Additionally, this model investigates the phenomena of rupture and stability that are observed in the conical liquid film, in which the importance of a new geometrical parameter of atomization, “ϰ”, which immediately influences the drop size diameter of the spray, should be highlighted. The results that are obtained using this model are compared with analytical results of Couto, Wang and Lefebvre, Jasuja, Radcliffe and Lefebvre, experimental results and numerics (Hollow cone atomization model), using the Ansys Fluent software for the validation and consistency of the model proposed in Rivas (2015). This model yields good approximations as compared to that yielded using other alternative mathematical models, demonstrating that the new atomization geometric parameter “ϰ” is an “adjustment” factor that exhibits considerable significance while designing pressure swirl atomizers according to the required SMD. Furthermore, this model is easy to use, with reliable results, and has the advantage of saving computational time.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.