M. Kodirkhonov, N. Vokhidova, S. S. Rashidova, X. Nie, Jamshidkhon Kadirkhanov
{"title":"甲基纤维素杂化纳米复合材料的物理化学及抗菌性能","authors":"M. Kodirkhonov, N. Vokhidova, S. S. Rashidova, X. Nie, Jamshidkhon Kadirkhanov","doi":"10.35812/cellulosechemtechnol.2023.57.16","DOIUrl":null,"url":null,"abstract":"\"Stabilized silver nanoparticles were obtained in the presence of a reducing agent – NaBH4 and a stabilizer – methylcellulose, at 40 °C and pH = 5.35-11. The stabilizing role of the polymer is shown, as it prevents the oxidation and agglomeration of nanoparticles. It was found that the synthesis pH is an important factor in the formation of stable nanoparticles, which contributes to the regulation of their hydrodynamic radius. The results of UV spectroscopy established that the synthesized samples of silver nanoparticles achieve aggregative stability within 96 hours. Solutions and films of hybrid nanocomposites were comprehensively investigated by spectral, XRD and thermal studies. The diffractogram of silver NPs, corresponding to JCPDS No. 04-0783, was confirmed by the XRD method. In the studied pH range, the hydrodynamic radius and distribution of Ag NPs in methylcellulose solutions had a polymodal character, and an increase in pH to 9–11 led to an increase in particle aggregation. It was found that stabilized silver nanoparticles showed antimicrobial activity against microorganisms – Streptococcus salivarius, Staphylococcus saprophyticus, Streptococcus mitis and Proteus vulgaris, with the formation of an inhibitory zone in the range of 15.0±0.2÷20.0±0.4 mm. The synthesized samples are of applied interest in the development of antibacterial drug systems.\"","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HYBRID NANOCOMPOSITES OF METHYLCELLULOSE: PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES\",\"authors\":\"M. Kodirkhonov, N. Vokhidova, S. S. Rashidova, X. Nie, Jamshidkhon Kadirkhanov\",\"doi\":\"10.35812/cellulosechemtechnol.2023.57.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Stabilized silver nanoparticles were obtained in the presence of a reducing agent – NaBH4 and a stabilizer – methylcellulose, at 40 °C and pH = 5.35-11. The stabilizing role of the polymer is shown, as it prevents the oxidation and agglomeration of nanoparticles. It was found that the synthesis pH is an important factor in the formation of stable nanoparticles, which contributes to the regulation of their hydrodynamic radius. The results of UV spectroscopy established that the synthesized samples of silver nanoparticles achieve aggregative stability within 96 hours. Solutions and films of hybrid nanocomposites were comprehensively investigated by spectral, XRD and thermal studies. The diffractogram of silver NPs, corresponding to JCPDS No. 04-0783, was confirmed by the XRD method. In the studied pH range, the hydrodynamic radius and distribution of Ag NPs in methylcellulose solutions had a polymodal character, and an increase in pH to 9–11 led to an increase in particle aggregation. It was found that stabilized silver nanoparticles showed antimicrobial activity against microorganisms – Streptococcus salivarius, Staphylococcus saprophyticus, Streptococcus mitis and Proteus vulgaris, with the formation of an inhibitory zone in the range of 15.0±0.2÷20.0±0.4 mm. The synthesized samples are of applied interest in the development of antibacterial drug systems.\\\"\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2023.57.16\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.16","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
HYBRID NANOCOMPOSITES OF METHYLCELLULOSE: PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES
"Stabilized silver nanoparticles were obtained in the presence of a reducing agent – NaBH4 and a stabilizer – methylcellulose, at 40 °C and pH = 5.35-11. The stabilizing role of the polymer is shown, as it prevents the oxidation and agglomeration of nanoparticles. It was found that the synthesis pH is an important factor in the formation of stable nanoparticles, which contributes to the regulation of their hydrodynamic radius. The results of UV spectroscopy established that the synthesized samples of silver nanoparticles achieve aggregative stability within 96 hours. Solutions and films of hybrid nanocomposites were comprehensively investigated by spectral, XRD and thermal studies. The diffractogram of silver NPs, corresponding to JCPDS No. 04-0783, was confirmed by the XRD method. In the studied pH range, the hydrodynamic radius and distribution of Ag NPs in methylcellulose solutions had a polymodal character, and an increase in pH to 9–11 led to an increase in particle aggregation. It was found that stabilized silver nanoparticles showed antimicrobial activity against microorganisms – Streptococcus salivarius, Staphylococcus saprophyticus, Streptococcus mitis and Proteus vulgaris, with the formation of an inhibitory zone in the range of 15.0±0.2÷20.0±0.4 mm. The synthesized samples are of applied interest in the development of antibacterial drug systems."
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials