锗涂层对锆植入物表面性能的优化

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2023-02-14 DOI:10.4028/p-cq67ab
Dhuha Hussain Mohammed, R. K. Jassim
{"title":"锗涂层对锆植入物表面性能的优化","authors":"Dhuha Hussain Mohammed, R. K. Jassim","doi":"10.4028/p-cq67ab","DOIUrl":null,"url":null,"abstract":"Background: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), water contact angle test, and cross-hatch adhesion tests were then used for surface characterization Results: An XRD analysis of the Ge-coated Zr samples revealed the substrate while the FESEM results revealed a continuous coating with no cracks. The mean surface roughness and hydrophilicity of the Ge-coated Zr substrate was significantly higher than that of the uncoated Zr substrate (P≤0.01). The cross-hatch adhesion of all the samples was 0%, thereby indicating good coating adhesion. Conclusion: Therefore Coating Zr implants with Ge via TVD enhances its physical and chemical properties.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing the Surface Properties of Zirconium Implants with Germanium Coating\",\"authors\":\"Dhuha Hussain Mohammed, R. K. Jassim\",\"doi\":\"10.4028/p-cq67ab\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), water contact angle test, and cross-hatch adhesion tests were then used for surface characterization Results: An XRD analysis of the Ge-coated Zr samples revealed the substrate while the FESEM results revealed a continuous coating with no cracks. The mean surface roughness and hydrophilicity of the Ge-coated Zr substrate was significantly higher than that of the uncoated Zr substrate (P≤0.01). The cross-hatch adhesion of all the samples was 0%, thereby indicating good coating adhesion. Conclusion: Therefore Coating Zr implants with Ge via TVD enhances its physical and chemical properties.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-cq67ab\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-cq67ab","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

背景:众所周知,锆(Zr)植入物具有美观的牙齿状颜色,与钛(Ti)植入物用于薄牙龈生物型时随着时间的推移而形成的灰色颈领不同。然而,Zr植入物的表面质量可以进一步提高。本研究使用热气相沉积(TVD)在Zr植入物上涂覆锗(Ge),以改善其物理和化学特性,增强软组织和硬组织的反应。材料与方法:将Zr椎间盘分为两组;未涂覆(对照)组仅用氧化铝颗粒进行喷砂处理,而涂覆(实验)组通过TVD进行喷砂处理然后用Ge涂覆。场发射扫描电子显微镜(FESEM)、能量色散X射线(EDX)光谱、X射线衍射(XRD)、原子力显微镜(AFM)、水接触角测试,结果:Ge涂层Zr样品的XRD分析显示了基底,而FESEM结果显示了没有裂纹的连续涂层。Ge涂层Zr基体的平均表面粗糙度和亲水性显著高于未涂层Zr基质(P≤0.01)。所有样品的交叉影线附着力均为0%,表明涂层附着力良好。结论:通过TVD在锆植入体上包覆锗,可以提高其物理化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing the Surface Properties of Zirconium Implants with Germanium Coating
Background: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), water contact angle test, and cross-hatch adhesion tests were then used for surface characterization Results: An XRD analysis of the Ge-coated Zr samples revealed the substrate while the FESEM results revealed a continuous coating with no cracks. The mean surface roughness and hydrophilicity of the Ge-coated Zr substrate was significantly higher than that of the uncoated Zr substrate (P≤0.01). The cross-hatch adhesion of all the samples was 0%, thereby indicating good coating adhesion. Conclusion: Therefore Coating Zr implants with Ge via TVD enhances its physical and chemical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Preparation and Characterization of PMMA/SrBHA Composites for Bone Replacement Applications Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 65 Characterization of Polycaprolactone/Eucomis autumnalis Cellulose Composite: Structural, Thermal, and Mechanical Analysis Bio-Convective Flow of Micropolar Nanofluids over an Inclined Permeable Stretching Surface with Radiative Activation Energy Improving Chitosan/PVA Electrospun Nanofibers Antimicrobial Efficacy with Methylene Blue for Effective E. Coli Inhibition Using Photodynamic Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1