S. Samuel, O. Mursid, S. Yulianti, Kiryanto, Muhammad Iqbal
{"title":"减少船体阻力的拦截器设计评估","authors":"S. Samuel, O. Mursid, S. Yulianti, Kiryanto, Muhammad Iqbal","doi":"10.21278/brod73306","DOIUrl":null,"url":null,"abstract":"A planing hull is a high-speed craft with relatively complex hydrodynamic characteristics. An increase in speed can induce a significant change in trim angle with an increment in ship drag. One solution to reduce ship resistance is to use an interceptor. This research aimed to analyze the hydrodynamics of a planing hull vessel by applying an interceptor. The fundamental aspects reviewed included the analysis of drag, trim, heave, and lift force. The interceptor would be investigated on the basis of its integrated position at its height. This research also used the computational fluid dynamic (CFD) method in calm water conditions. All simulations were conducted with the same mesh structure, which allowed the performance evaluation of the interceptor in calculating turbulent air–water flow around the ship. Numerical calculations used the Reynolds-averaged Navier–Stokes (RANS) equation with the k–ε turbulence model to predict the turbulent flow. The vertical motion of the ship was modeled using dynamic fluid–body interaction (DFBI) in the fluid domain through an overset mesh technique. The numerical approach was compared with the experimental test results of Park et al. to ensure the accuracy of the test results. The interceptor was designed at the transition phase, which showed the highest trim angle followed by high drag. The interceptor would experience negative trim at high speeds; thus, it was not recommended. The research results indicated that the most effective use of the interceptor was at Froude number 0.87 close to the chine position with a height of 100%. This interceptor could reduce a maximum of 57% drag, 17% heave, 8.48% trim, and 0.12% lift force. The interceptor could increase excessive drag and trim at Froude numbers over 1.16. The interceptor proved to be remarkably useful in trim control and ship drag reduction, but selecting the wrong dimensions and positions of the interceptor could endanger the ship. This simulation was performed on Aragon-2; thus, the interceptor performance may possibly change if a different hull geometry is used.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"EVALUATION OF INTERCEPTOR DESIGN TO REDUCE DRAG ON PLANING HULL\",\"authors\":\"S. Samuel, O. Mursid, S. Yulianti, Kiryanto, Muhammad Iqbal\",\"doi\":\"10.21278/brod73306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A planing hull is a high-speed craft with relatively complex hydrodynamic characteristics. An increase in speed can induce a significant change in trim angle with an increment in ship drag. One solution to reduce ship resistance is to use an interceptor. This research aimed to analyze the hydrodynamics of a planing hull vessel by applying an interceptor. The fundamental aspects reviewed included the analysis of drag, trim, heave, and lift force. The interceptor would be investigated on the basis of its integrated position at its height. This research also used the computational fluid dynamic (CFD) method in calm water conditions. All simulations were conducted with the same mesh structure, which allowed the performance evaluation of the interceptor in calculating turbulent air–water flow around the ship. Numerical calculations used the Reynolds-averaged Navier–Stokes (RANS) equation with the k–ε turbulence model to predict the turbulent flow. The vertical motion of the ship was modeled using dynamic fluid–body interaction (DFBI) in the fluid domain through an overset mesh technique. The numerical approach was compared with the experimental test results of Park et al. to ensure the accuracy of the test results. The interceptor was designed at the transition phase, which showed the highest trim angle followed by high drag. The interceptor would experience negative trim at high speeds; thus, it was not recommended. The research results indicated that the most effective use of the interceptor was at Froude number 0.87 close to the chine position with a height of 100%. This interceptor could reduce a maximum of 57% drag, 17% heave, 8.48% trim, and 0.12% lift force. The interceptor could increase excessive drag and trim at Froude numbers over 1.16. The interceptor proved to be remarkably useful in trim control and ship drag reduction, but selecting the wrong dimensions and positions of the interceptor could endanger the ship. This simulation was performed on Aragon-2; thus, the interceptor performance may possibly change if a different hull geometry is used.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod73306\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
EVALUATION OF INTERCEPTOR DESIGN TO REDUCE DRAG ON PLANING HULL
A planing hull is a high-speed craft with relatively complex hydrodynamic characteristics. An increase in speed can induce a significant change in trim angle with an increment in ship drag. One solution to reduce ship resistance is to use an interceptor. This research aimed to analyze the hydrodynamics of a planing hull vessel by applying an interceptor. The fundamental aspects reviewed included the analysis of drag, trim, heave, and lift force. The interceptor would be investigated on the basis of its integrated position at its height. This research also used the computational fluid dynamic (CFD) method in calm water conditions. All simulations were conducted with the same mesh structure, which allowed the performance evaluation of the interceptor in calculating turbulent air–water flow around the ship. Numerical calculations used the Reynolds-averaged Navier–Stokes (RANS) equation with the k–ε turbulence model to predict the turbulent flow. The vertical motion of the ship was modeled using dynamic fluid–body interaction (DFBI) in the fluid domain through an overset mesh technique. The numerical approach was compared with the experimental test results of Park et al. to ensure the accuracy of the test results. The interceptor was designed at the transition phase, which showed the highest trim angle followed by high drag. The interceptor would experience negative trim at high speeds; thus, it was not recommended. The research results indicated that the most effective use of the interceptor was at Froude number 0.87 close to the chine position with a height of 100%. This interceptor could reduce a maximum of 57% drag, 17% heave, 8.48% trim, and 0.12% lift force. The interceptor could increase excessive drag and trim at Froude numbers over 1.16. The interceptor proved to be remarkably useful in trim control and ship drag reduction, but selecting the wrong dimensions and positions of the interceptor could endanger the ship. This simulation was performed on Aragon-2; thus, the interceptor performance may possibly change if a different hull geometry is used.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.