减少船体阻力的拦截器设计评估

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-07-01 DOI:10.21278/brod73306
S. Samuel, O. Mursid, S. Yulianti, Kiryanto, Muhammad Iqbal
{"title":"减少船体阻力的拦截器设计评估","authors":"S. Samuel, O. Mursid, S. Yulianti, Kiryanto, Muhammad Iqbal","doi":"10.21278/brod73306","DOIUrl":null,"url":null,"abstract":"A planing hull is a high-speed craft with relatively complex hydrodynamic characteristics. An increase in speed can induce a significant change in trim angle with an increment in ship drag. One solution to reduce ship resistance is to use an interceptor. This research aimed to analyze the hydrodynamics of a planing hull vessel by applying an interceptor. The fundamental aspects reviewed included the analysis of drag, trim, heave, and lift force. The interceptor would be investigated on the basis of its integrated position at its height. This research also used the computational fluid dynamic (CFD) method in calm water conditions. All simulations were conducted with the same mesh structure, which allowed the performance evaluation of the interceptor in calculating turbulent air–water flow around the ship. Numerical calculations used the Reynolds-averaged Navier–Stokes (RANS) equation with the k–ε turbulence model to predict the turbulent flow. The vertical motion of the ship was modeled using dynamic fluid–body interaction (DFBI) in the fluid domain through an overset mesh technique. The numerical approach was compared with the experimental test results of Park et al. to ensure the accuracy of the test results. The interceptor was designed at the transition phase, which showed the highest trim angle followed by high drag. The interceptor would experience negative trim at high speeds; thus, it was not recommended. The research results indicated that the most effective use of the interceptor was at Froude number 0.87 close to the chine position with a height of 100%. This interceptor could reduce a maximum of 57% drag, 17% heave, 8.48% trim, and 0.12% lift force. The interceptor could increase excessive drag and trim at Froude numbers over 1.16. The interceptor proved to be remarkably useful in trim control and ship drag reduction, but selecting the wrong dimensions and positions of the interceptor could endanger the ship. This simulation was performed on Aragon-2; thus, the interceptor performance may possibly change if a different hull geometry is used.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"EVALUATION OF INTERCEPTOR DESIGN TO REDUCE DRAG ON PLANING HULL\",\"authors\":\"S. Samuel, O. Mursid, S. Yulianti, Kiryanto, Muhammad Iqbal\",\"doi\":\"10.21278/brod73306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A planing hull is a high-speed craft with relatively complex hydrodynamic characteristics. An increase in speed can induce a significant change in trim angle with an increment in ship drag. One solution to reduce ship resistance is to use an interceptor. This research aimed to analyze the hydrodynamics of a planing hull vessel by applying an interceptor. The fundamental aspects reviewed included the analysis of drag, trim, heave, and lift force. The interceptor would be investigated on the basis of its integrated position at its height. This research also used the computational fluid dynamic (CFD) method in calm water conditions. All simulations were conducted with the same mesh structure, which allowed the performance evaluation of the interceptor in calculating turbulent air–water flow around the ship. Numerical calculations used the Reynolds-averaged Navier–Stokes (RANS) equation with the k–ε turbulence model to predict the turbulent flow. The vertical motion of the ship was modeled using dynamic fluid–body interaction (DFBI) in the fluid domain through an overset mesh technique. The numerical approach was compared with the experimental test results of Park et al. to ensure the accuracy of the test results. The interceptor was designed at the transition phase, which showed the highest trim angle followed by high drag. The interceptor would experience negative trim at high speeds; thus, it was not recommended. The research results indicated that the most effective use of the interceptor was at Froude number 0.87 close to the chine position with a height of 100%. This interceptor could reduce a maximum of 57% drag, 17% heave, 8.48% trim, and 0.12% lift force. The interceptor could increase excessive drag and trim at Froude numbers over 1.16. The interceptor proved to be remarkably useful in trim control and ship drag reduction, but selecting the wrong dimensions and positions of the interceptor could endanger the ship. This simulation was performed on Aragon-2; thus, the interceptor performance may possibly change if a different hull geometry is used.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod73306\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 5

摘要

滑行船体是一种具有相对复杂的水动力特性的高速飞行器。随着船舶阻力的增加,速度的增加会引起纵倾角的显著变化。减少船舶阻力的一种解决方案是使用拦截弹。本研究旨在应用拦截弹分析滑行船体船舶的流体动力学。综述的基本方面包括阻力、纵倾、升沉和升力的分析。拦截弹将根据其高度的综合位置进行调查。本研究还采用了计算流体动力学(CFD)方法在静水条件下进行研究。所有模拟都是用相同的网格结构进行的,这使得拦截弹在计算船舶周围的湍流空气-水流时能够进行性能评估。数值计算使用雷诺平均Navier-Stokes(RANS)方程和k–ε湍流模型来预测湍流。船舶的垂直运动是使用流体域中的动态流体-体相互作用(DFBI)通过叠加网格技术建模的。将数值方法与Park等人的实验测试结果进行了比较,以确保测试结果的准确性。拦截弹是在过渡阶段设计的,它显示出最高的配平角,然后是高阻力。拦截弹在高速时会出现负配平;因此,不建议使用。研究结果表明,拦截弹最有效的使用是在接近100%高度的机器位置的弗劳德数0.87处。这种拦截弹可以最大减少57%的阻力、17%的升沉、8.48%的配平和0.12%的升力。当弗劳德数超过1.16时,拦截弹可能会增加过大的阻力和配平。事实证明,该拦截弹在纵倾控制和减阻方面非常有用,但选择错误的拦截弹尺寸和位置可能会危及船只。该模拟是在Aragon-2上进行的;因此,如果使用不同的船体几何形状,拦截器的性能可能会发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EVALUATION OF INTERCEPTOR DESIGN TO REDUCE DRAG ON PLANING HULL
A planing hull is a high-speed craft with relatively complex hydrodynamic characteristics. An increase in speed can induce a significant change in trim angle with an increment in ship drag. One solution to reduce ship resistance is to use an interceptor. This research aimed to analyze the hydrodynamics of a planing hull vessel by applying an interceptor. The fundamental aspects reviewed included the analysis of drag, trim, heave, and lift force. The interceptor would be investigated on the basis of its integrated position at its height. This research also used the computational fluid dynamic (CFD) method in calm water conditions. All simulations were conducted with the same mesh structure, which allowed the performance evaluation of the interceptor in calculating turbulent air–water flow around the ship. Numerical calculations used the Reynolds-averaged Navier–Stokes (RANS) equation with the k–ε turbulence model to predict the turbulent flow. The vertical motion of the ship was modeled using dynamic fluid–body interaction (DFBI) in the fluid domain through an overset mesh technique. The numerical approach was compared with the experimental test results of Park et al. to ensure the accuracy of the test results. The interceptor was designed at the transition phase, which showed the highest trim angle followed by high drag. The interceptor would experience negative trim at high speeds; thus, it was not recommended. The research results indicated that the most effective use of the interceptor was at Froude number 0.87 close to the chine position with a height of 100%. This interceptor could reduce a maximum of 57% drag, 17% heave, 8.48% trim, and 0.12% lift force. The interceptor could increase excessive drag and trim at Froude numbers over 1.16. The interceptor proved to be remarkably useful in trim control and ship drag reduction, but selecting the wrong dimensions and positions of the interceptor could endanger the ship. This simulation was performed on Aragon-2; thus, the interceptor performance may possibly change if a different hull geometry is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Application of an offline grey box method for predicting the manoeuvring performance Four-quadrant propeller hydrodynamic performance mapping for improving ship motion predictions Optimization of exhaust ejector with lobed nozzle for marine gas turbine Control method for the ship track and speed in curved channels Research on temperature distribution in container ship with Type-B LNG fuel tank based on CFD and analytical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1