视觉皮层的尖峰-伽玛相位关系。

IF 5 2区 医学 Q1 NEUROSCIENCES Annual Review of Vision Science Pub Date : 2022-06-06 DOI:10.1146/annurev-vision-100419-104530
Supratim Ray
{"title":"视觉皮层的尖峰-伽玛相位关系。","authors":"Supratim Ray","doi":"10.1146/annurev-vision-100419-104530","DOIUrl":null,"url":null,"abstract":"Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to modulation of spike timing relative to the rhythm. I first show that the gamma band could be more privileged than other frequencies in observing spike-field interactions even in the absence of genuine gamma rhythmicity and discuss several biases in spike-gamma phase estimation. I then discuss the expected spike-gamma phase according to several hypotheses. Inconsistent with the phase-coding hypothesis (but not with others), the spike-gamma phase does not change with changes in stimulus intensity or attentional state, with spikes preferentially occurring 2-4 ms before the trough, but with substantial variability. However, this phase relationship is expected even when gamma is a byproduct of excitatory-inhibitory interactions. Given that gamma occurs in short bursts, I argue that the debate over the role of gamma is a matter of semantics. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spike-Gamma Phase Relationship in the Visual Cortex.\",\"authors\":\"Supratim Ray\",\"doi\":\"10.1146/annurev-vision-100419-104530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to modulation of spike timing relative to the rhythm. I first show that the gamma band could be more privileged than other frequencies in observing spike-field interactions even in the absence of genuine gamma rhythmicity and discuss several biases in spike-gamma phase estimation. I then discuss the expected spike-gamma phase according to several hypotheses. Inconsistent with the phase-coding hypothesis (but not with others), the spike-gamma phase does not change with changes in stimulus intensity or attentional state, with spikes preferentially occurring 2-4 ms before the trough, but with substantial variability. However, this phase relationship is expected even when gamma is a byproduct of excitatory-inhibitory interactions. Given that gamma occurs in short bursts, I argue that the debate over the role of gamma is a matter of semantics. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-100419-104530\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-100419-104530","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

伽马振荡(30-70赫兹)已被假设在皮层功能中发挥作用。大多数提出的机制涉及伽马频率下神经元兴奋性的节律性调节,导致相对于节律的尖峰时间的调节。我首先表明,即使在没有真正的伽马节律性的情况下,伽马带在观察尖峰-场相互作用时也可能比其他频率更有优势,并讨论了尖峰-伽马相位估计中的几个偏差。然后,我根据几个假设讨论了预期的尖峰伽马相位。与相位编码假说不一致(但与其他假说不一致),尖峰伽马相位不会随着刺激强度或注意力状态的变化而变化,尖峰优先发生在波谷前2-4毫秒,但具有很大的可变性。然而,即使伽马是兴奋性-抑制性相互作用的副产品,这种相位关系也是可以预期的。鉴于伽马射线发生在短爆发中,我认为关于伽马射线作用的争论是一个语义问题。《视觉科学年度评论》第8卷预计最终在线出版日期为2022年9月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spike-Gamma Phase Relationship in the Visual Cortex.
Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to modulation of spike timing relative to the rhythm. I first show that the gamma band could be more privileged than other frequencies in observing spike-field interactions even in the absence of genuine gamma rhythmicity and discuss several biases in spike-gamma phase estimation. I then discuss the expected spike-gamma phase according to several hypotheses. Inconsistent with the phase-coding hypothesis (but not with others), the spike-gamma phase does not change with changes in stimulus intensity or attentional state, with spikes preferentially occurring 2-4 ms before the trough, but with substantial variability. However, this phase relationship is expected even when gamma is a byproduct of excitatory-inhibitory interactions. Given that gamma occurs in short bursts, I argue that the debate over the role of gamma is a matter of semantics. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Vision Science
Annual Review of Vision Science Medicine-Ophthalmology
CiteScore
11.10
自引率
1.70%
发文量
19
期刊介绍: The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.
期刊最新文献
Informing Endpoints for Clinical Trials of Geographic Atrophy Retinal Connectomics: A Review Impact of Glaucomatous Ganglion Cell Damage on Central Visual Function Digital Image Sensor Evolution and New Frontiers Cellular and Molecular Mechanisms Regulating Retinal Synapse Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1