Peng Liu, Dongsheng Yuan, Chao Dong, Gaoting Lin, Encarnación G. Víllora, Ji Qi, Xinguo Zhao, Kiyoshi Shimamura, Jie Ma, Junfeng Wang, Zhidong Zhang, Bing Li
{"title":"紧凑型磁致冷用超低场磁热材料","authors":"Peng Liu, Dongsheng Yuan, Chao Dong, Gaoting Lin, Encarnación G. Víllora, Ji Qi, Xinguo Zhao, Kiyoshi Shimamura, Jie Ma, Junfeng Wang, Zhidong Zhang, Bing Li","doi":"10.1038/s41427-023-00488-7","DOIUrl":null,"url":null,"abstract":"Magnetic refrigeration around the liquid-helium temperature plays a critical role in many technological sectors. Even if gallium gadolinium garnet (GGG) has been regarded as the benchmark, its application is highly limited by the small magnetic entropy changes, the requirement of superconducting magnets, and the large device sizes. Here, we report that LiREF4 (RE = rare earth) single crystals exhibit significantly superior magnetocaloric performance levels to commercial GGG. Under a small magnetic field of 5 kOe, which can be easily achieved by a permanent magnet, the magnetic entropy change reaches a record-high value of 16.7 J kg−1 K−1 in LiHoF4 in contrast to the value of 1.0 J kg−1 K−1 in GGG. The combination of small driving fields, large entropy changes, and excellent thermal and/or magnetic reversibility enables this series to be employed as the ideal working material for compact magnetic refrigeration around the liquid-helium temperature. Compact and sustainable magnetic refrigeration technology can achieve unprecedented performance using lithium rare earth fluorides. For over a century, researchers have realized that magnetic fields can heat up or cool down other magnets thanks to magnetic entropy, the thermodynamic energy released when spins align or de-align. Finding magnets with sufficient thermal response for refrigeration has been a long-standing challenge. Now, Peng Liu from the University of Science and Technology of China in Shenyang and colleagues report that lithium holmium fluorides (LiHoF4) show record-setting magnetic entropy changes around liquid-helium temperatures, about 16 times larger than those of commercial magnetic refrigeration crystals. The entire chemical family of lithium rare earth fluorides measured by the team showed remarkable magnetic entropy changes under very small driving magnetic fields. The single crystals of lithium rare earth fluorides exhibit remarkable magnetocaloric performance with a record-high entropy change of 16.73 J kg-1 K-1 achieved under a very small magnetic field of 5 kOe.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-9"},"PeriodicalIF":8.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00488-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultralow-field magnetocaloric materials for compact magnetic refrigeration\",\"authors\":\"Peng Liu, Dongsheng Yuan, Chao Dong, Gaoting Lin, Encarnación G. Víllora, Ji Qi, Xinguo Zhao, Kiyoshi Shimamura, Jie Ma, Junfeng Wang, Zhidong Zhang, Bing Li\",\"doi\":\"10.1038/s41427-023-00488-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic refrigeration around the liquid-helium temperature plays a critical role in many technological sectors. Even if gallium gadolinium garnet (GGG) has been regarded as the benchmark, its application is highly limited by the small magnetic entropy changes, the requirement of superconducting magnets, and the large device sizes. Here, we report that LiREF4 (RE = rare earth) single crystals exhibit significantly superior magnetocaloric performance levels to commercial GGG. Under a small magnetic field of 5 kOe, which can be easily achieved by a permanent magnet, the magnetic entropy change reaches a record-high value of 16.7 J kg−1 K−1 in LiHoF4 in contrast to the value of 1.0 J kg−1 K−1 in GGG. The combination of small driving fields, large entropy changes, and excellent thermal and/or magnetic reversibility enables this series to be employed as the ideal working material for compact magnetic refrigeration around the liquid-helium temperature. Compact and sustainable magnetic refrigeration technology can achieve unprecedented performance using lithium rare earth fluorides. For over a century, researchers have realized that magnetic fields can heat up or cool down other magnets thanks to magnetic entropy, the thermodynamic energy released when spins align or de-align. Finding magnets with sufficient thermal response for refrigeration has been a long-standing challenge. Now, Peng Liu from the University of Science and Technology of China in Shenyang and colleagues report that lithium holmium fluorides (LiHoF4) show record-setting magnetic entropy changes around liquid-helium temperatures, about 16 times larger than those of commercial magnetic refrigeration crystals. The entire chemical family of lithium rare earth fluorides measured by the team showed remarkable magnetic entropy changes under very small driving magnetic fields. The single crystals of lithium rare earth fluorides exhibit remarkable magnetocaloric performance with a record-high entropy change of 16.73 J kg-1 K-1 achieved under a very small magnetic field of 5 kOe.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00488-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00488-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00488-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultralow-field magnetocaloric materials for compact magnetic refrigeration
Magnetic refrigeration around the liquid-helium temperature plays a critical role in many technological sectors. Even if gallium gadolinium garnet (GGG) has been regarded as the benchmark, its application is highly limited by the small magnetic entropy changes, the requirement of superconducting magnets, and the large device sizes. Here, we report that LiREF4 (RE = rare earth) single crystals exhibit significantly superior magnetocaloric performance levels to commercial GGG. Under a small magnetic field of 5 kOe, which can be easily achieved by a permanent magnet, the magnetic entropy change reaches a record-high value of 16.7 J kg−1 K−1 in LiHoF4 in contrast to the value of 1.0 J kg−1 K−1 in GGG. The combination of small driving fields, large entropy changes, and excellent thermal and/or magnetic reversibility enables this series to be employed as the ideal working material for compact magnetic refrigeration around the liquid-helium temperature. Compact and sustainable magnetic refrigeration technology can achieve unprecedented performance using lithium rare earth fluorides. For over a century, researchers have realized that magnetic fields can heat up or cool down other magnets thanks to magnetic entropy, the thermodynamic energy released when spins align or de-align. Finding magnets with sufficient thermal response for refrigeration has been a long-standing challenge. Now, Peng Liu from the University of Science and Technology of China in Shenyang and colleagues report that lithium holmium fluorides (LiHoF4) show record-setting magnetic entropy changes around liquid-helium temperatures, about 16 times larger than those of commercial magnetic refrigeration crystals. The entire chemical family of lithium rare earth fluorides measured by the team showed remarkable magnetic entropy changes under very small driving magnetic fields. The single crystals of lithium rare earth fluorides exhibit remarkable magnetocaloric performance with a record-high entropy change of 16.73 J kg-1 K-1 achieved under a very small magnetic field of 5 kOe.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.